Skip to main content
Log in

Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet–visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current–voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10−6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yan, H.S. Choe, S.W. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, and C.M. Lieber, Nature 470, 240 (2011).

    Article  Google Scholar 

  2. L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C.M. Lieber, Nano Lett. 13, 746 (2013).

    Article  Google Scholar 

  3. H.E. Jeong, I. Kim, P. Karam, H.-J. Choi, and P.D. Yang, Nano Lett. 13, 2864 (2013).

    Article  Google Scholar 

  4. S. Kaluza, M.K. Schröter, R.N. d’Alnoncourt, T. Reinecke, and M. Muhler, Adv. Funct. Mater. 18, 3670 (2008).

    Article  Google Scholar 

  5. M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, and J. Zhu, J. Mater. Chem. 21, 7723 (2011).

    Article  Google Scholar 

  6. Z.L. Yuan, M.X. Fu, and Y.J. Ren, J. Electron. Mater. 43, 3270 (2014).

    Article  Google Scholar 

  7. X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue, and A.Y. Kuznetsov, Adv. Mater. 21, 4625 (2009).

    Article  Google Scholar 

  8. X. Han, L. Kou, X. Lang, J. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. Liao, X. Zhang, X. Shan, X. Song, J. Gao, W. Guo, and D.P. Yu, Adv. Mater. 21, 4937 (2009).

    Article  Google Scholar 

  9. H. Kind, H. Yan, B. Messer, M. Law, and P.D. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  10. P.-H. Yeh, Z. Li, and Z.L. Wang, Adv. Mater. 21, 4975 (2009).

    Article  Google Scholar 

  11. J. Goldberger, D.J. Sirbuly, M. Law, and P.D. Yang, J. Phys. Chem. B 109, 9 (2005).

    Article  Google Scholar 

  12. L.M. Li, Z.F. Du, C.C. Li, J. Zhang, and T.H. Wang, Nanotechnology 18, 355606 (2007).

    Article  Google Scholar 

  13. W.I. Park and G.C. Yi, Adv. Mater. 16, 87 (2004).

    Article  Google Scholar 

  14. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nat. Mater. 4, 455 (2005).

    Article  Google Scholar 

  15. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, and E.S. Aydil, Nano Lett. 7, 1793 (2007).

    Article  Google Scholar 

  16. D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, and J.W.P. Hsu, J. Phys. Chem. C 111, 16640 (2007).

    Article  Google Scholar 

  17. Z.L. Yuan, J.S. Yu, N.N. Wang, and Y.D. Jiang, J. Mater. Sci. 22, 1730 (2011).

    Google Scholar 

  18. J.S. Yu, Z.L. Yuan, S.J. Han, and Z. Ma, Nanoscale Res. Lett. 7, 517 (2012).

    Article  Google Scholar 

  19. X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, Science 316, 102 (2007).

    Article  Google Scholar 

  20. Z.L. Yuan, J.S. Yu, W.M. Ma, and Y.D. Jiang, Appl. Phys. A 106, 511 (2012).

    Article  Google Scholar 

  21. J. Cui and U.J. Gibson, J. Phys. Chem. B 109, 22074 (2005).

    Article  Google Scholar 

  22. L. Vayssieres, Adv. Mater. 15, 464 (2003).

    Article  Google Scholar 

  23. P. Shimpi, P.X. Gao, D.G. Goberman, and Y. Ding, Nanotechnology 20, 125608 (2009).

    Article  Google Scholar 

  24. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981), p. 169.

    Google Scholar 

  25. H. Umezawa, T. Saito, N. Tokuda, M. Ogura, S.G. Ri, H. Yoshikawa, and S.I. Shikata, Appl. Phys. Lett. 90, 073506 (2007).

    Article  Google Scholar 

  26. S. Papatzika, N.A. Hastas, C.T. Angelis, C.A. Dimitriadis, G. Kamarinos, and J.I. Lee, Appl. Phys. Lett. 80, 1468 (2002).

    Article  Google Scholar 

  27. I. Rýger, G. Vanko, T. Lalinský, P. Kunzo, M. Vallo, I. Vávra, and T. Plecenik, Sens. Actuators B 202, 1 (2014).

    Article  Google Scholar 

  28. D.C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, and H.J. Ko, J. Vac. Sci. Technol. B 24, 1595 (2006).

    Article  Google Scholar 

  29. M.Y. Soomro, I. Hussain, N. Bano, O. Nur, and M. Willander, Superlattices Microstruct. 62, 200 (2013).

    Article  Google Scholar 

  30. W.I. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park, Appl. Phys. Lett. 82, 4358 (2003).

    Article  Google Scholar 

  31. Z.L. Yuan, J. Mater. Sci. 25, 2248 (2014).

    Google Scholar 

  32. N.N. Wang, J.S. Yu, Y. Zang, J. Huang, and Y.D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010).

    Article  Google Scholar 

  33. X. Wang, J. Huang, S.J. Han, and J.S. Yu, Appl. Phys. Lett. 104, 173304 (2014).

    Article  Google Scholar 

  34. Y. Guo, X.B. Cao, X.M. Lan, C. Zhao, X.D. Xue, and Y.Y. Song, J. Phys. Chem. C 112, 8832 (2008).

    Article  Google Scholar 

  35. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, and H. Deng, J. Alloy. Compd. 448, 21 (2008).

    Article  Google Scholar 

  36. D.B. Wang and C.X. Song, J. Phys. Chem. B 109, 12697 (2005).

    Article  Google Scholar 

  37. X.T. Yang, G.T. Du, X.Q. Wang, J.Z. Wang, B.Y. Liu, Y.T. Zhang, D. Liu, D.L. Liu, H.C. Ong, and S.R. Yang, J. Crystal Growth 252, 275 (2003).

    Article  Google Scholar 

  38. S. Yamauchi, Y. Goto, and T. Hariu, J. Crystal Growth 260, 1 (2004).

    Article  Google Scholar 

  39. M. Willander, L.L. Yang, A. Wadeasa, S.U. Ali, M.H. Asif, Q.X. Zhao, and O. Nur, J. Mater. Chem. 19, 1006 (2009).

    Article  Google Scholar 

  40. M. Liu, A.H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).

    Article  Google Scholar 

  41. F. Fang, D.X. Zhao, X. Fang, J.H. Li, Z.P. Wei, S.Z. Wang, J.L. Wu, and X.H. Wang, J. Mater. Chem. 21, 14979 (2011).

    Article  Google Scholar 

  42. S. Mridha and D. Basak, Appl. Phys. Lett. 92, 142111 (2008).

    Article  Google Scholar 

  43. K. Ip, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, S. Kim, J.R. Laroche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application. J. Electron. Mater. 44, 1187–1191 (2015). https://doi.org/10.1007/s11664-015-3661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3661-4

Keywords

Navigation