Skip to main content
Log in

Optoelectronic Properties of ZnO Nanoparticle/Pentacene Heterojunction Photodiode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We fabricated photodiodes based on planar heterojunctions of zinc oxide (ZnO) nanoparticles (NPs, ∼5 nm) and pentacene. The current density–voltage (JV) characteristics of the photodiodes were investigated in the dark and under illumination. The photodiodes had good rectifying behavior in the dark and under illumination. A high rectification ratio (RR) of 878 at ±1.75 V and a low turn-on voltage of 1.3 V were achieved in the dark. Under 100 mW/cm2 illumination, an RR of 55.3 was obtained at ±1.90 V. Furthermore, the photoresponsive mechanism of the device was explained in terms of the schematic band diagram and the transport of charge carriers in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

    Article  Google Scholar 

  2. J.Z. Song, Y. He, J. Chen, D. Zhu, Z.D. Pan, Y.F. Zhang, and J.A. Wang, J. Electron. Mater. 41, 431 (2012).

    Article  Google Scholar 

  3. A. Kathalingam and J.K. Rhee, J. Electron. Mater. 41, 2162 (2012).

    Article  Google Scholar 

  4. G.D. Sharma, R. Kumar, S.K. Sharma, and M.S. Roy, Sol. Energy Mater. Sol. Cells 90, 933 (2006).

    Article  Google Scholar 

  5. B.N. Pal, J. Sun, B.J. Jung, E. Choi, A.G. Andreou, and H.E. Katz, Adv. Mater. 20, 1023 (2008).

    Article  Google Scholar 

  6. J.W. Ryan, E. Palomares, and E. Martínez-Ferrero, J. Mater. Chem. 21, 4774 (2011).

    Article  Google Scholar 

  7. S. Karan and B. Mallik, Nanotechnology 19, 495202 (2008).

    Article  Google Scholar 

  8. L.D. Wang, D.X. Zhao, Z.S. Su, F. Fang, B.H. Li, Z.Z. Zhang, D.Z. Shen, and X.H. Wang, Org. Electron. 11, 1318 (2010).

    Article  Google Scholar 

  9. B. Pradhan, A.K. Sharma, and A.K. Ray, J. Phys. D Appl. Phys. 42, 165308 (2009).

    Article  Google Scholar 

  10. C.J. Novotny, E.T. Yu, and P.K.L. Yu, Nano Lett. 8, 775 (2008).

    Article  Google Scholar 

  11. Z.L. Yuan, J.S. Yu, W.M. Ma, and Y.D. Jiang, Appl. Phys. A 106, 511 (2012).

    Article  Google Scholar 

  12. Z.L. Yuan and Y.J. Ren, Physica E 48, 128 (2013).

    Article  Google Scholar 

  13. F. Xu and L.T. Sun, Energy Environ. Sci. 4, 818 (2011).

    Article  Google Scholar 

  14. W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen, Adv. Mater. 16, 1009 (2004).

    Article  Google Scholar 

  15. S.L. Bai, J.W. Hu, D.Q. Li, R.X. Luo, A.F. Chen, and C.C. Liu, J. Mater. Chem. 21, 12288 (2011).

    Article  Google Scholar 

  16. J.H. Jun, B. Park, K. Cho, and S. Kim, Nanotechnology 20, 505201 (2009).

    Article  Google Scholar 

  17. A.N. Aleshin, E.L. Alexandrova, and I.P. Shcherbakov, J. Phys. D Appl. Phys. 42, 105108 (2009).

    Article  Google Scholar 

  18. L. Torsi, N. Cioffi, C.D. Franco, L. Sabbatini, P.G. Zambonin, and T. Bleve-Zacheo, Solid-State Electron. 45, 1479 (2001).

    Article  Google Scholar 

  19. B.N. Pal, P. Trottman, J. Sun, and H.E. Katz, Adv. Funct. Mater. 18, 1832 (2008).

    Article  Google Scholar 

  20. X.G. Yu, J.S. Yu, J.L. Zhou, W. Huang, and H. Lin, Eur. Phys. J. Appl. Phys. 62, 20101 (2013).

    Article  Google Scholar 

  21. W.Y. Chou, J. Chang, C.T. Yen, Y.S. Lin, F.C. Tang, S.J. Liu, H.L. Cheng, S.L.C. Hsu, and J.S. Chen, Phys. Chem. Chem. Phys. 14, 5284 (2012).

    Article  Google Scholar 

  22. E.D. Głowacki, L. Leonat, M. Irimia-Vladu, R. Schwödiauer, M. Ullah, H. Sitter, S. Bauer, and N.S. Sariciftci, Appl. Phys. Lett. 101, 023305 (2012).

    Article  Google Scholar 

  23. C. Voz, J. Puigdollers, I. Martín, D. Muñoz, A. Orpella, M. Vetter, and R. Alcubilla, Sol. Energy Mater. Sol. Cells 87, 567 (2005).

    Article  Google Scholar 

  24. C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002).

    Article  Google Scholar 

  25. N.N. Wang, J.S. Yu, Z.L. Yuan, and Y.D. Jiang, Eur. Phys. J. Appl. Phys. 58, 20201 (2012).

    Article  Google Scholar 

  26. N.N. Wang, J.S. Yu, Y. Zang, J. Huang, and Y.D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010).

    Article  Google Scholar 

  27. J.S. Yu, N.N. Wang, Y. Zang, and Y.D. Jiang, Sol. Energy Mater. Sol. Cells 95, 664 (2011).

    Article  Google Scholar 

  28. A.L. Roest, J.J. Kelly, and D. Vanmaekelbergh, Phys. Rev. Lett. 89, 036801 (2002).

    Article  Google Scholar 

  29. S. Lee, D.J. Yun, S.W. Rhee, and K. Yong, J. Mater. Chem. 19, 6857 (2009).

    Article  Google Scholar 

  30. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981), p. 63.

    Google Scholar 

  31. K. Mohanta, S.K. Batabyal, and A.J. Pal, Adv. Funct. Mater. 18, 687 (2008).

    Article  Google Scholar 

  32. Z.L. Yuan, J.S. Yu, N.N. Wang, and Y.D. Jiang, Curr. Appl. Phys. 12, 1278 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Fu, M. & Ren, Y. Optoelectronic Properties of ZnO Nanoparticle/Pentacene Heterojunction Photodiode. J. Electron. Mater. 43, 3270–3275 (2014). https://doi.org/10.1007/s11664-014-3268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3268-1

Keywords

Navigation