Skip to main content
Log in

Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In printed electronics applications, specific resistances of conductive lines are critical to the performance of the devices. The specific resistance of a silver (Ag) nanoparticle electrode is affected by surface morphology of the layered nanoparticles which were sintered by the heat treatment after printing. In this work, the relationship between surface morphology and specific resistance was investigated with various sintering temperatures and various layer thicknesses of Ag nanoparticle ink. Ag nanoparticles with an average size of approximately 50 nm were spin-coated on Eagle XG glass substrates with various spin speed to change the layer thickness of Ag nanoparticles from 200 nm to 900 nm. Coated Ag nanoparticle layers were heated from 150°C to 450°C for 30 min in a furnace. The result showed that higher sintering temperature produces larger grains in an Ag layer and decreases specific resistance of the layer, but that the maximum allowable heating temperature is limited by the thickness of the layer. When grain size exceeded the thickness of the layer, the morphology of the Ag nanoparticles changed to submicron-sized islands and the Ag layers did not have electrical conductivity any more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Kang, W.I. Jeong, J.J. Kim, H.K. Kim, D.G. Kim, and G.H. Lee, High-performance flexible organic light-emitting diodes using amorphous indium zinc oxide anode. Electrochem. Solid-State Lett. 10, 75 (2007).

    Article  Google Scholar 

  2. L. Hou, F. Huang, W. Zeng, J. Peng, and Y. Cao, High- efficiency inverted top-emitting polymer light-emitting diodes. Appl. Phys. Lett. 87, 153509 (2005).

    Article  Google Scholar 

  3. V. Shamanna, S. Das, Z. Celik-Butler, and K.L. Lawrence, Micromachined integrated pressure–thermal sensors on flexible substrates. J. Micromech. Microeng. 16, 1984 (2006).

    Article  Google Scholar 

  4. F. Jiang, G.B. Lee, Y.C. Tai, and C.M. Ho, A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens. Actuators A 79, 194 (2000).

    Article  Google Scholar 

  5. S.A. Day, D.P. Butler, and Z. Celik-Bulter, Micromachined infrared bolometers on flexible polyimide substrates. Sens. Actuators A 118, 49 (2005).

    Article  Google Scholar 

  6. S. Tung, S.R. Witherspoon, L.A. Roe, A. Silano, D.P. Maynard, and N. Ferraro, AMEMS-based flexible sensor and actuator system for space inflatable structures. Smart Mater. Struct. 10, 1230 (2001).

    Article  Google Scholar 

  7. K.J. Lee, B.H. Jun, T.H. Kim, and J. Joung, Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17, 2424 (2006).

    Article  Google Scholar 

  8. D. Kim, S. Jeong, B.K. Park, and J. Moon, Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 89, 264101 (2006).

    Article  Google Scholar 

  9. T.H.J. Van Osch, J. Perelaer, A.W.M. De Laat, and U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20, 343 (2008).

    Article  Google Scholar 

  10. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (New York: Wiley, 1976).

    Google Scholar 

  11. F.F. Lange, Sinterability of agglomerated powders. J. Am. Ceram. Soc. 67, 83 (1984).

    Article  Google Scholar 

  12. C.J. Brinker and G.W. Scherer, Sol–Gel Science (San Diego, CA: Academic, 1990).

    Google Scholar 

  13. K.S. Chou, K.C. Huang, and H.H. Lee, Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by spin coating method. Nanotechnology 16, 779 (2005).

    Article  Google Scholar 

  14. J.W. Park and S.G. Baek, Thermal behavior of direct-printed lines of silver nanoparticles. Scr. Mater. 55, 1139 (2006).

    Article  Google Scholar 

  15. Y.J. Moon, H. Kang, K. Kang, J.Y. Hwang, J.H. Lee, and S.J. Moon, Effect of laser intensity on the characteristics of inkjet-printed silver nanoparticles during continuous laser sintering. J. Nanosci. Nanotechnol. 14, 8631 (2014).

    Article  Google Scholar 

  16. J. Perelaer, A.W.M. de Laat, C.E. Hendriks, and U.S. Schubert, Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J. Mater. Chem. 18, 3209 (2008).

    Article  Google Scholar 

  17. B.J. Norris, J. Anderson, J.F. Wagner, and D.A. Keszler, J. Phys. D. 36, L105 (2003).

    Article  Google Scholar 

  18. J.H. Lim, J.H. Shim, J.H. Choi, J.H. Joo, K. Park, H.S. Jeon, M.R. Moon, D.G. Jung, H.S. Kim, and H.J. Lee, Solution-processed InGaZnO-based thin film transistors for printed electronics applications. Appl. Phys. Lett. 95, 012108 (2009).

    Article  Google Scholar 

  19. J.Y. Hwang and S.J. Moon, The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering. J. Nanosci. Nanotechnol. 13, 6145 (2013).

    Article  Google Scholar 

  20. K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hurt, y. Li, and C.P. Wang, Thermal behavior of silver nanoparticles for low temperature interconnect applications. J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  21. J.S. Kang, J. Ryu, H.S. Kim, and H.T. Hahn, Sintering of inkjet printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40, 2268 (2011).

    Article  Google Scholar 

  22. P. Zeng, S. Zajac, P.C. Clapp, and J.A. Rifkin, Nanoparticle sintering simulations. Mater. Sci. Eng. A 252, 301 (1998).

    Article  Google Scholar 

  23. M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).

    Article  Google Scholar 

  24. B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, and R.D. Tilley, How nanoparticles coalesce: an in␣situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312 (2011).

    Article  Google Scholar 

  25. D.W. Richerson, Modern Ceramic Engineering: Properties, Processing and Use in Design, 2nd ed. (New York: Marcel Dekker, 1992).

    Google Scholar 

  26. M.N. Rahaman, Ceramic Processing and Sintering, 2nd ed. (New York: Marcel Dekker, 2003).

    Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Industrial Source Technology Development Program (Grant 10041041) of the Ministry of Trade, Industry and Energy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Jae Moon or Jun Young hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, Y.J., Kang, H., Kang, K. et al. Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering. J. Electron. Mater. 44, 1192–1199 (2015). https://doi.org/10.1007/s11664-015-3639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3639-2

Keywords

Navigation