Skip to main content
Log in

Synthesis and Characterization of Melt-Spun Metastable Al6Ge5

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic structure and thermoelectric (TE) properties of metastable Al6Ge5 were investigated. The crystal structure with nominal composition Al6Ge5 is identified as isostructural to the high-performance TE material Zn4Sb3. The calculated density of states (DOS) shows that Al6Ge5 is a semiconductor with small bandgap of E g = 0.44 eV. Moreover, as Al6Ge5 has sharp edges in the DOS near the Fermi energy, high Seebeck coefficient (S) values are expected. Ribbon samples of Al6Ge5 were prepared using a single-roll melt-spinning method. We developed a process to prepare Al6Ge5 as the main component using this method under various optimal conditions, mainly cooling rate. Room-temperature values for S and electrical conductivity are −17.5 μV K−1 and 2.64 × 104 Ω−1 m−1, respectively. The κ value of around 0.5 W m−1 K−1 at room temperature is considerably low. Although Al6Ge5 has potential to be a good TE material, the S value of the prepared samples is low, like metals, mainly due to impurities existing in the samples. High zT is considered obtainable by preparing high-purity single-phase Al6Ge5 with optimized carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  2. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  Google Scholar 

  3. J. Tani and H. Kido, Phys. B 364, 218 (2005).

    Article  Google Scholar 

  4. T. Laoui and M.J. Kaufman, Metall. Trans. A 22, 2141 (1991).

    Article  Google Scholar 

  5. M.J. Kaufman and H.L. Fraser, Acta Metall. 33, 191 (1985).

    Article  Google Scholar 

  6. R. Vincent and D.R. Exelby, Acta Cryst. A 51, 801 (1995).

    Article  Google Scholar 

  7. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  Google Scholar 

  8. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  9. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  10. G. Kresse and D. Joubert, Phys Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  11. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  12. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  13. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  14. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  15. N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 114, 134311 (2013).

    Article  Google Scholar 

  16. A.S. Mikhaylushkin, J. Nylen, and U. Haussermann, Chem. Eur. J. 11, 4912 (2005).

    Article  Google Scholar 

  17. V.T. Swamy, K. Chattopadhyay, and S. Ranganathan, Mater. Sci. Eng. A 123, 247 (1990).

    Article  Google Scholar 

  18. G. Swanson and K. Tatge, Natl. Bur. Stand. Circ. 1, 18 (1951).

    Google Scholar 

  19. H.M. Otte, J. Appl. Phys. 32, 1536 (1961).

    Article  Google Scholar 

  20. E. Kim, Z.-T. Jiang, and K. No, Jpn. J. Appl. Phys. 39, 4820 (2000).

    Article  Google Scholar 

  21. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  22. E.A. Davis and N.F. Mott, Philos. Mag. 22, 903 (1970).

    Article  Google Scholar 

  23. W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846 (1974).

    Article  Google Scholar 

  24. J.W. Precker and M.A. Silva, Am. J. Phys. 70, 1150 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (Grant No. 25289220) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Kumagai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, M., Kurosaki, K., Uchida, N. et al. Synthesis and Characterization of Melt-Spun Metastable Al6Ge5 . J. Electron. Mater. 44, 948–952 (2015). https://doi.org/10.1007/s11664-014-3592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3592-5

Keywords

Navigation