Skip to main content
Log in

Study of the Photoconductivity of Zinc Oxide Nanoparticles Synthesized by a Sol–Gel Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NPs) were synthesized by use of a sol–gel method at different temperatures, and characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–visible absorption spectroscopy. XRD analysis showed crystallite size was of the order of few tens of nanometers and the NPs had a wurtzite structure. SEM micrographs showed the NPs were pseudo-spherical in shape. UV–visible absorption study revealed a blue shift of the absorption edge compared with that of bulk ZnO. With increasing temperature of synthesis, the absorption edge was red-shifted. The photoconductivity, in air, of all the samples was studied. Variation of the dark current with applied voltage was linear for NPs synthesized at low temperatures and became super-linear for NPs synthesized at high temperatures. The dark current decreased with increasing temperature of synthesis. Photosensitivity was maximum for NPs synthesized at 600°C. Anomalous behavior, a decrease in photocurrent even during steady illumination, was observed for all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P.H. Chang, Phys. Rev. Lett. 82, 2278 (1999).

    Google Scholar 

  2. S. Stassinopoulos, R.N. Das, S.H. Anastasiadis, E.P. Giannelis, and D. Anglos, J. Opt. 12, 024006 (2010).

    Google Scholar 

  3. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Google Scholar 

  4. D. Basak, G. Amin, B. Mallik, G.K. Paul, and S.K. Sen, J. Cryst. Growth 256, 73 (2003).

    Google Scholar 

  5. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).

    Google Scholar 

  6. J. Bao, M.A. Zimmler, and F. Capasso, Nano Lett. 6, 1719 (2006).

    Google Scholar 

  7. A.B. Djurisic, A.M.C. Ng, and X.Y. Chen, Prog. Quant. Elec. 34, 191 (2010).

    Google Scholar 

  8. L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen, and M. Nieminen, Phys. Stat. Sol. 201, 1443 (2004).

    Google Scholar 

  9. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L. Wang, Nano Lett. 6, 2768 (2006).

    Google Scholar 

  10. O. Klutha, B. Rech, L. Houben, S. Wieder, G. Schoepe, C. Beneking, H. Wagner, A. Loef, and H.W. Schock, Thin Solid Films 351, 247 (1999).

    Google Scholar 

  11. W.J.E. Beek, M.M. Wienk, M. Kemerink, X. Yang, and R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005).

    Google Scholar 

  12. Y.H. Hsu, J.L. William, and C. Tang, J. Mater. Sci. 19, 653 (2008).

    Google Scholar 

  13. S. Roy and S. Basu, Bull. Mater. Sci. 25, 513 (2002).

    Google Scholar 

  14. S. Kedia, R. Vijaya, A.K. Ray, S. Sinha, and K.D. Gupta, Indian J. Phys. 75, 975 (2010).

    Google Scholar 

  15. S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, J. Mater. Chem. A 1, 2744 (2013).

    Google Scholar 

  16. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M.A. Suleiman, A.E. Shaer, A.C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, and D.L.S. Dang, Nanotechnology 20, 332001 (2009).

    Google Scholar 

  17. Y.S. Choi, J.W. Kang, D.K. Hwang, and S.J. Park, IEEE Trans. Electron Devices 57, 26 (2010).

    Google Scholar 

  18. C.P. Chen, P.H. Lin, L.Y. Chen, M.Y. Ke, Y.W. Cheng, and J.J. Huang, Nanotechnology 20, 245204 (2009).

    Google Scholar 

  19. S.J. Young, L.W. Ji, S.J. Chang, and X.L. Du, J. Electrochem. Soc. 154, H26 (2007).

    Google Scholar 

  20. M.S. Wu, A. Azuma, T. Shiosaki, and A. Kawabata, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 442 (1989).

    Google Scholar 

  21. J.H. Lee, K.H. Ko, and B.O. Park, J. Cryst. Growth 247, 119 (2003).

    Google Scholar 

  22. V.C. Sousa, A.M. Segadaes, M.R. Morelli, and R.H.G.A. Kiminami, Int. J. Inorg. Mater. 1, 235 (1999).

    Google Scholar 

  23. S.C. Pillai, J.M. Kelly, D.E.M. Cormack, and R. Ramesh, J. Mater. Chem. 14, 1572 (2004).

    Google Scholar 

  24. R.N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, and T. Nagarajan, Nanostruct. Mater. 6, 993 (1995).

    Google Scholar 

  25. Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Lid, G.H. Markx, A.J. Walton, and W.I. Milne, Sens. Actuators B 143, 606 (2010).

    Google Scholar 

  26. Y. Ni, X. Wei, J. Hongb, and Y. Ye, Mater. Sci. Eng. B 121, 42 (2005).

    Google Scholar 

  27. B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, Nanotechnology 15, S382 (2004).

    Google Scholar 

  28. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, and J.H. Song, Appl. Phys. Lett. 83, 1689 (2003).

    Google Scholar 

  29. G. Shen, Y. Bando, B. Liu, D. Golberg, and C.J. Lee, Adv. Funct. Mater. 16, 410 (2006).

    Google Scholar 

  30. R. Andres, B. Mendez, F.L. Urıas, M. Terrones, and H. Terrones, Nano Lett. 8, 1562 (2008).

    Google Scholar 

  31. X. Wang, J. Song, and Z.L. Wang, J. Mater. Chem. 17, 711 (2007).

    Google Scholar 

  32. S. Kar, A. Dev, and S. Chaudhuri, J. Phys. Chem. B 110, 17848 (2006).

    Google Scholar 

  33. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, and S.T. Lee, Chem. Mater. 14, 1216 (2002).

    Google Scholar 

  34. R. Wahab, Y.S. Kim, A. Mishra, S. Yun, and H. Shin, Nanoscale Res. Lett. 5, 1675 (2010).

    Google Scholar 

  35. B.M. Addou, A. Kachouane, J.C. Bérnède, and M. Morsli, Mater. Chem. Phys. 91, 247 (2005).

    Google Scholar 

  36. T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Photochem. Photobiol. A 182, 335 (2006).

    Google Scholar 

  37. M.S. Niasari, F. Davar, and M. Mazaheri, Mater. Lett. 62, 1890 (2008).

    Google Scholar 

  38. C.F. Jin, X. Yuan, W. Ge, J. Hong, and X. Xin, Nanotechnology 14, 667 (2003).

    Google Scholar 

  39. S.B. Rana, A. Singh, and S. Singh, Int. J. Nano Electron. Mater. 6, 45 (2013).

    Google Scholar 

  40. H. Wang, J. Xie, K. Yan, and M. Duan, J. Mater. Sci. Technol. 27, 153 (2011).

    Google Scholar 

  41. L. Huilian, Y.J. Zhang, Y. Jung, W. Yaxin, and W. Maobin, Chem. Res. Chin. Univ. 25, 430 (2009).

    Google Scholar 

  42. L. Nurtdinova, V. Semashko, Y. Guyot, S. Korableva, M.F. Joubert, and A. Nizamutdinov, Opt. Mater. 33, 1530 (2011).

    Google Scholar 

  43. E. Pace, R.D. Benedetto, and S. Scuderi, Diam. Relat. Mater. 9, 987 (2000).

    Google Scholar 

  44. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, and M. Rusop, Opt. Mater. 32, 696 (2010).

    Google Scholar 

  45. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    Google Scholar 

  46. C.W. Chen, C.C. Huang, Y.Y. Lin, L.C. Chen, K.H. Chen, and W.F. Su, Diam. Relat. Mater. 14, 1010 (2005).

    Google Scholar 

  47. Y. Haga, H. An, and R. Yosomiya, J. Mater. Sci. 32, 3183 (1997).

    Google Scholar 

  48. V.I. Polyakov, A.I. Rukovishnikov, N.M. Rossukanyi, A.I. Krikunov, V.G. Ralchenko, A.A. Smolin, V.I. Konov, V.P. Varnin, and I.G. Teremetskaya, Diam. Relat. Mater. 7, 821 (1998).

    Google Scholar 

  49. X. Li, J.E. Carey, J.W. Sickler, M.U. Pralle, C. Palsule, and C.J. Vineis, Opt. Express 20, 5518 (2012).

    Google Scholar 

  50. Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao, and L. Zang, J. Am. Chem. Soc. 132, 5743 (2010).

    Google Scholar 

  51. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).

    Google Scholar 

  52. B.K. Gupta, O.P. Agnihotri, and A. Raza, Thin solids Films 48, 153 (1978).

    Google Scholar 

  53. R.H. Bube, J. Appl. Phys. 35, 586 (1964).

    Google Scholar 

  54. P.K.C. Pillai, N. Schroff, N. Kumar, and A.K. Tripathi, Phys. Rev. 32, 8288 (1985).

    Google Scholar 

  55. S. Bhusan and L.C. Giriya, Cryst. Res. Technol. 22, 1179 (1987).

    Google Scholar 

  56. W.H. Leighton, J. Appl. Phys. 44, 595 (1973).

    Google Scholar 

  57. R.W. Glew, Thin Solid Films 46, 59 (1977).

    Google Scholar 

  58. S. Devi and S.G. Prakash, J. Phys. 39, 145 (1992).

    Google Scholar 

  59. N. Pandey, R.K. Srivastava, and S.G. Prakash, Nat. Acad. Sci. Lett. 36, 521 (2013).

    Google Scholar 

  60. J.B. Johnson, H. Jones, B.S. Latham, J.D. Parker, R.D. Engelken, and C. Barber, Semicond. Sci. Technol. 14, 501 (1999).

    Google Scholar 

  61. S. Lu and B. Panchapakesan, Nanotechnology 17, 1843 (2006).

    Google Scholar 

  62. E.R. Viana, J.C. González, G.M. Ribeiro, and A.G. Oliveira, Phys. Status Phys. Solidi 6, 262 (2012).

    Google Scholar 

  63. K. Huang and Q. Zhang, Nanoscale Res. Lett. 6, 52 (2011).

    Google Scholar 

  64. A.K. Chakraborty and B. Mallik, Synth. Met. 73, 239 (1995).

    Google Scholar 

  65. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, and S.T. Lee, Nano Lett. 6, 1887 (2006).

    Google Scholar 

  66. R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, and S.G. Prakash, Spectrochim. Acta. Part A 76, 523 (2010).

    Google Scholar 

  67. N. Fishelson, I. Shkrob, O. Lev, J. Gun, and A.D. Modestov, Langmuir 17, 403 (2001).

    Google Scholar 

  68. M.C. Beard, G.M. Turner, A. Charles, and Schmuttenmaer, Nanoletter 2, 983 (2002).

    Google Scholar 

  69. C.S.A. Raj and F.P. Xavier, Arch. Appl. Sci. Res. 5, 167 (2013).

    Google Scholar 

  70. R. Shankar, R.K. Srivastava, and S.G. Prakash, Electron. Mater. Lett. 9, 555 (2013).

    Google Scholar 

  71. M. Benhaliliba, C.E. Benouis, M.S. Aida, A.S. Juarez, F. Yakuphanoglu, and A.T. Silver, J. Alloys Compd. 506, 548 (2010).

    Google Scholar 

  72. J.B. Baxter and C.A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006).

    Google Scholar 

  73. S.K. Mishra, S. Bayan, P. Chakraborty, and R.K. Srivastava, Appl. Phys. A 115, 1193 (2014).

    Google Scholar 

  74. B.T. Ghosh and D. Basak, Appl. Mater. Interfaces 2, 2898 (2010).

    Google Scholar 

  75. A.E.J. Gonzalez and J.A.S. Urueta, Sol. Energy Mater. Sol. Cells 52, 345 (1998).

    Google Scholar 

  76. Y.K. Seo, S. Kumar, and G.H. Kim, Physica E 42, 1163 (2010).

    Google Scholar 

  77. C.C. Lin and Y.Y. Li, Mater. Chem. Phys. 113, 334 (2009).

    Google Scholar 

  78. S.K. Mishra, R.K. Srivastava, and S.G. Prakash, J. Alloys Compd. 539, 1 (2012).

    Google Scholar 

  79. S.K. Mishra, R.K. Srivastava, and S.G. Prakash, J. Mater. Sci. 24, 125 (2013).

    Google Scholar 

  80. R. Kripal, A.K. Gupta, R.K. Srivastava, and S.K. Mishra, Spectrochim. Acta Part A 79, 1605 (2011).

    Google Scholar 

  81. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2001).

    Google Scholar 

  82. S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, and R. Dogra, J. Optoelectron. Adv. Mater. 12, 257 (2010).

    Google Scholar 

  83. R. Wahab, S.G. Ansari, Y.S. Kim, M.S. Dhage, H.K. Seo, M. Song, and H.S. Shin, Met. Mater. Int. 15, 453 (2009).

    Google Scholar 

  84. H. Yu, J. Yu, B. Cheng, and M. Zhou, J. Solid State Chem. 179, 349 (2006).

    Google Scholar 

  85. P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D.K. Singh, and P.K. Iyer, J. Nano Sci. Nano. Technol. 11, 1 (2011).

    Google Scholar 

  86. A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, and S.M. Hosseini, Ceram. Int. 37, 393 (2011).

    Google Scholar 

  87. S. Devi and S.G. Prakash, J. Phys. 39, 145 (1992).

    Google Scholar 

  88. S. Devi and S.G. Prakash, J. Phys. 43, 245 (1994).

    Google Scholar 

  89. P.K.C. Pillai, N. Shroff, N.N. Kumar, and A.K. Tripathi, Phys. Rev. B 32, 8228 (1985).

    Google Scholar 

  90. R.W. Smith and A. Rose, Phys. Rev. Lett. 97, 1531 (1955).

    Google Scholar 

  91. M.M.H. Farooqi and R.K. Srivastava, Mater. Sci. Semicond. Process. 20, 61 (2014).

    Google Scholar 

  92. B. Sen, M. Stroscio, and M. Dutta, J. Electron. Mater. 40, 2015 (2011).

    Google Scholar 

  93. S.E. Ahn, H.S. Lee, H. Kim, S. Kim, B.K. Kang, K.H. Kim, and G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004).

    Google Scholar 

  94. S.E. Ahn, H.J. Ji, K. Kim, G.T. Kim, C.H. Bae, S.M. Park, Y.K. Kim, and J.S. Ha, Appl. Phys. Lett. 90, 153106 (2007).

    Google Scholar 

  95. L. Peng, J.L. Zhai, D.J. Wang, P. Wang, Y. Zhang, S. Pang, and T.F. Xie, Chem. Phys.Lett. 456, 231 (2008).

    Google Scholar 

  96. R.K. Srivastava, N. Pandey, and S.K. Mishra, Mater. Sci. Semicond. Process. 16, 1659 (2013).

    Google Scholar 

  97. A. Bera and D. Basak, Appl. Phys. Lett. 93, 053102 (2008).

    Google Scholar 

  98. Q.H. Li, T. Gao, Y.G. Wang, and T.H. Wang, Appl. Phys. Lett. 86, 123117 (2005).

    Google Scholar 

  99. X.G. Zheng, Q.S. Li, W. Hu, D. Chen, N. Zhang, M.J. Shi, J.J. Wang, and L.C. Zhang, J. Lumin. 122, 198 (2007).

    Google Scholar 

  100. A. Bera and D. Basak, Appl. Mater. Interfaces 1, 2066 (2009).

    Google Scholar 

  101. Q.H. Li, T. Gao, Y.G. Wang, and T.H. Wang, Appl. Phys. Lett. 86, 123117 (2005).

    Google Scholar 

  102. M. Purahmad, M.A. Stroscio, and M. Dutta, J. Electron. Mater. 43, 740 (2014).

    Google Scholar 

  103. J. Carrey, H. Carrere, M.L. Kahn, B. Chaudret, X. Marie, and M. Respaud, Semicond. Sci. Technol. 23, 025003 (2008).

    Google Scholar 

  104. A.M. Eppler, I.M. Ballard, and J. Nelson, Physica E 14, 197 (2002).

    Google Scholar 

  105. A. Bera and D. Basak, Appl. Phys. Lett. 94, 163119 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF, Chandigarh, for providing XRD and SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N., Srivastava, R.K. Study of the Photoconductivity of Zinc Oxide Nanoparticles Synthesized by a Sol–Gel Method. J. Electron. Mater. 44, 56–61 (2015). https://doi.org/10.1007/s11664-014-3498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3498-2

Keywords

Navigation