Skip to main content
Log in

Refluxed sol–gel synthesized ZnO nanopowder with variable zinc precursor concentrations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticles were synthesized using refluxed sol–gel method with variable zinc precursor concentration ranging from 0.1 to 0.2 M. The structural, morphology and optical properties of ZnO nanostructures were investigated using different characterization techniques. Concentration of zinc precursor significantly affects the morphology, structural and optical properties. All ZnO samples prepared are pure hexagonal wurtzite in structure and the crystallite sizes increases from 24 to 35 nm. The average lattice parameters were calculated as a = 0.3267 nm and c = 0.5232 nm. The average bond length of ZnO nanocrystalline was calculated to be around 0.1988 nm. The photoluminescence measurement result shows that both UV (at 380 nm) and visible (between 428 and 636 nm centered at 540 nm) emissions are displayed with the excitation wavelength of 248.6 nm from NeCu laser source. The room temperature photoluminescence measurement shows that the emission wavelength shifted towards the higher wavelength as zinc precursor concentration increases. The intensity ratio of the near-band-edge emission to deep-level emission increases as zinc precursor concentration increases. With low temperature photoluminescence (from 84 to 300 K) measurement, the emission energy increases from 3.28 to 3.35 eV. The deep-level emission of the ZnO was displayed in the green and yellow regions of the visible spectrum. The reflectance spectra from UV–Vis spectroscopy show that the concentration of zinc precursor has a significant effect on the band gaps of the material which decreased from 3.26 to 3.24 eV as the zinc precursor concentration increased from 0.1 to 0.2 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Matsubara, R. Hunger, S. Niki, Appl. Phys. Lett. 79, 4139–4141 (2001)

    ADS  Google Scholar 

  2. Ü Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  3. F. Aslan, A. Tumbul, A. Göktaş, R. Budakoğlu, İH. Mutlu, J. Sol–Gel. Sci. Technol. 80, 389–395 (2016)

    Google Scholar 

  4. R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar, M.S. Akhtar, J. Mater. Sci. 52, 4743–4795 (2017)

    ADS  Google Scholar 

  5. S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Solar Energy Mater. Solar Cells 92, 1639–1645 (2008)

    Google Scholar 

  6. S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloy. Compd. 499, 231–237 (2010)

    Google Scholar 

  7. R. Vittal, K. Ho, Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Google Scholar 

  8. S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011)

    Google Scholar 

  9. Y.T. Yin, W.X. Que, C.H. Kam, J. Sol-Gel. Sci. Technol. 53, 605–612 (2010)

    Google Scholar 

  10. F.B. Dejene, A.G. Ali, H.C. Swart, R.J. Botha, K. Roro, L. Coetsee, M.M. Biggs, Cent. Eur. J. Phys. 9(5), 1321–1326 (2011)

    Google Scholar 

  11. K. Agnieszka, J. Teofil, Materials, 7, 2833–2881 (2014)

    Google Scholar 

  12. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, M. Muhammed, J. Phys. Chem. B 101, 2598–2601 (1997)

    Google Scholar 

  13. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)

    ADS  Google Scholar 

  14. X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15, 383–396 (2016)

    ADS  Google Scholar 

  15. J. Ungula, B.F. Dejene, H.C. Swart, Phys. B 535, 251–257 (2018)

    ADS  Google Scholar 

  16. M. Søndergaard, E.D. Bøjesen, M. Christensen, B.B. Iversen, Cryst. Growth Des. 11(9), 4027–4033 (2011)

    Google Scholar 

  17. S.S. Alias, A.A. Mohamad, Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells. Springer Briefs in Materials. Springer, New York (2014)

    Google Scholar 

  18. J. Kaur, P. Kumar, T.S. Sathiaraj, R. Thangaraj, Int. Nano Lett. 3, 4 (2013)

    Google Scholar 

  19. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)

    ADS  Google Scholar 

  20. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  21. K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Nanoscale Res. Lett. 9, 429 (2014)

    ADS  Google Scholar 

  22. J. Ungula, B.F. Dejene, Phys. B 480, 26–30 (2016)

    ADS  Google Scholar 

  23. L.T. Jule., F.B. Dejene, K.T. Roro, Z.N. Urgessa, J.R. Botha, Phys. B 497, 71–77 (2016)

    ADS  Google Scholar 

  24. M.S. Kim, K.G. Yim, S. Kim, G. Nam, D.-Y. Lee, J.S. Kim, J.-Y. Leem, J. Korean Phys. Soc. 59(3), 2354–2361 (2011)

    ADS  Google Scholar 

  25. A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007)

    ADS  Google Scholar 

  26. Z.N. Urgessa, O.S. Oluwafemi, J.K. Dangbegnon, J.R. Botha, Phys. B 407, 1546–1549 (2012)

    ADS  Google Scholar 

  27. P.A. Rodnyi, I.V. Khodyuk, Opt. Spectros. 111, 776 (2011)

    ADS  Google Scholar 

  28. V. Koutu, L. Shastri, M.M. Malik, Mater. Sci. Pol. 34(4), 819–827 (2016)

    ADS  Google Scholar 

  29. V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)

    ADS  Google Scholar 

  30. M.D. McCluskey, S.J. Jokela, J. Appl. Phys. 106, 071101 (2009)

    ADS  Google Scholar 

  31. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    ADS  Google Scholar 

  32. Z.N. Urgessa, J.R. Botha, M.O. Eriksson, C.M. Mbulanga, S.R. Dobson, S.R. Tankio Djiokap, K.F. Karlsson, V. Khranovskyy, R. Yakimova, P.-O. Holtz, J. Appl. Phys. 116, 123506 (2014)

    ADS  Google Scholar 

  33. L. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)

    ADS  Google Scholar 

  34. V. Khranovskyy, R. Yakimova, F. Karlsson, A.S. Syed, P. Holtz, Z.N. Urgessa, O.S. Oluwafemi, J.R. Botha, Phys. B Condens. Matter 407(10), 1538–1542 (2012)

    ADS  Google Scholar 

  35. A.B.M.A. Ashrafi, N.T. Binh, B.P. Zhang, Y. Segawa, J. Appl. Phys. 95, 7738 (2004)

    ADS  Google Scholar 

  36. H. Wang, J. Xie, K. Yan, M. Duan, J. Mater. Sci. Technol. 27(2), 153–158 (2011)

    Google Scholar 

  37. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13(10), 1633–1645 (2013)

    Google Scholar 

  38. A.H. Moharram, S.A. Mansour, M.A. Hussein, M. Rashad, J. Nanomater. (2014) 20

  39. Y. Leprince-Wang, A. Yacoubi-Ouslim, G.Y. Wang, Microelectron. J. 36, 625–628 (2005)

    Google Scholar 

  40. K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Results Phys. 7, 1190–1197 (2017)

    ADS  Google Scholar 

  41. N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik, 125 (2014) 2560–2564

  42. Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127, 10102–10107 (2016)

    ADS  Google Scholar 

  43. K.W. Guo, J. Appl. Biotechnol. Bioeng. 2(5), 197–202 (2017)

    Google Scholar 

  44. M. Kashif, Y. Al-Douri, U. Hashim, M.E. Ali, S.M.U. Ali, M. Willander, Micro Nano Lett. 7(2) (2012) 163–167

    Google Scholar 

  45. S. Khan, S.Q. Hussain, D. Hwang, S. Velumani, H. Lee, Mater. Sci. Semicond. Process. 37, 51–56 (2015)

    Google Scholar 

  46. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Directorate of research of the Free State University for the funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endris Taju Seid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seid, E.T., Dejene, F.B., Urgessa, Z.N. et al. Refluxed sol–gel synthesized ZnO nanopowder with variable zinc precursor concentrations. Appl. Phys. A 124, 738 (2018). https://doi.org/10.1007/s00339-018-2148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2148-6

Navigation