Skip to main content
Log in

Titanium-Catalyzed Silicon Nanostructures Grown by APCVD

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the partial pressure of SiCl4 gas, reaction temperature, and reaction time, was carried out to obtain insight into the growth regimes for the observed SNCs. Based on phase diagram analysis of Ti-Si alloy and growth rate analysis of the silicon nanowires (SNWs) and silicon nanoplatelets, we believe the growth mechanism to be strongly dependent on the thermodynamics of the system, exhibiting a delicate balance that can easily tip between the growth and etching regimes of the system. Three types of SNCs were observed frequently throughout the study: nanowires, nanoplatelets, and balls. Regimes for highly etched growth were also noted through growth conditions plots. Ti-catalyzed SNWs grown using SiCl4 gas strongly suggest growth occurring through a type of vapor–solid–solid (VSS) mechanism that is limited by diffusion through the solid–catalyst interface. On the other hand, the two-dimensional SNP morphologies suggest growth occurring through the twin-plane mechanism at the edges, at 10 nm to 100 nm scales, also through a similar, VSS mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Treuting and S.M. Arnold, Acta Metall. 5, 598 (1957).

    Article  Google Scholar 

  2. R.S. Wagner and C.W. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  Google Scholar 

  3. E.I. Givargizov, J. Cryst. Growth 31, 20–30 (1975).

    Article  Google Scholar 

  4. H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, and J. Lin, Nanotechnology 16, 417 (2005).

    Article  Google Scholar 

  5. M. Ghita, E. Godshalk, G. Goncher, and R. Solanki, Appl. Phys. Lett. 99, 153107 (2011).

    Article  Google Scholar 

  6. Y. Rangineni, C. Qi, G. Goncher, R. Solanki, and K. Langworthy, J. Nanosci. Nanotechnol. 8, 2419–2421 (2008).

    Article  Google Scholar 

  7. J.B. Jackson, D. Kapoor, S.G. Jun, and M.S. Miller, J. Appl. Phys. 102, 054310 (2007).

    Article  Google Scholar 

  8. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, and S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998).

    Article  Google Scholar 

  9. Z.W. Wang and Z.Y. Li, Nano Lett. 9, 1467–1471 (2009).

    Article  Google Scholar 

  10. Z. Pan, S. Dai, D.B. Beach, and D.H. Lowndes, Nano Lett. 3, 1279–1284 (2003).

    Article  Google Scholar 

  11. M. Jeon and K. Kamisako, J. Alloys Compd. 476, 84–88 (2009).

    Article  Google Scholar 

  12. J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, and L.J. Lauhon, J. Mater. Chem. 19, 849–857 (2009).

    Article  Google Scholar 

  13. T. Baron, M. Gordon, F. Dhaluin, C. Ternon, P. Ferret, and P. Gentil, Appl. Phys. Lett. 89, 233111 (2006).

    Article  Google Scholar 

  14. J.D. Carter, Y. Qu, R. Porter, L. Hoang, D.J. Masiel, and T. Guo, Chem. Commun. 17, 2274–2276 (2005).

    Article  Google Scholar 

  15. L. Yu, B. O’Donnell, J. Maurice, and P.R. Cabarrocas, Appl. Phys. Lett. 97, 023107 (2010).

    Article  Google Scholar 

  16. S. Sharma, T.I. Kamins, and R.S. Williams, J. Cryst. Growth 267, 613–618 (2004).

    Article  Google Scholar 

  17. K. Graff, Metal Impurities in Silicon-Device Fabrication (Berlin: Springer, 1999).

    Google Scholar 

  18. Q. Tang, X. Liu, T.I. Kamins, G.S. Solomon, and J.S. Harris, Appl. Phys. Lett. 81, 2451 (2002).

    Article  Google Scholar 

  19. S.M. Eichfeld, H. Shen, C.M. Eichfeld, S.E. Mohney, E.C. Dickey, and J.M. Redwing, J. Mater. Res. 26, 2207 (2011).

    Article  Google Scholar 

  20. T.I. Kamins, R. Williams, D.P. Basile, T. Hesjedal, and J.S. Harris, J. Appl. Phys. 89, 1008–1016 (2001).

    Article  Google Scholar 

  21. T.I. Kamins, R.S. Williams, Y. Chen, Y.L. Chang, and Y.A. Chang, Appl. Phys. Lett. 76, 562 (2000).

    Article  Google Scholar 

  22. T.I. Kamins, X. Li, and R. Stanley Williams, Appl. Phys. Lett. 82, 2 (2003).

    Article  Google Scholar 

  23. G. Goncher, R. Solanki, J.R. Carruthers, J. Conley Jr, and Y. Ono, J. Electron. Mater. 35, 1509–1512 (2006).

    Article  Google Scholar 

  24. J. Huo, R. Solanki, J.L. Freeouf, and J.R. Carruthers, Nanotechnology 15, 1848–1850 (2004).

    Article  Google Scholar 

  25. J. Weyher, J. Cryst. Growth 43, 235 (1978).

    Article  Google Scholar 

  26. Y.J. Zhang, Q. Zhang, N.L. Wang, Y.J. Yan, H.H. Zhou, and J. Zhu, J. Cryst. Growth 226, 185 (2011).

    Article  Google Scholar 

  27. O. Englander, D. Christensen, and L. Lin, Appl. Phys. Lett. 82, 467 (2003).

    Article  Google Scholar 

  28. O. Englander, D. Christensen, J. Kim, L. Lin, and S.J.S. Morris, Nano Lett. 5, 705–708 (2005).

    Article  Google Scholar 

  29. L.P. Hunt and E. Sirtl, J. Electrochem. Soc. 119, 1741 (1972).

    Article  Google Scholar 

  30. H.C. Theurer, J. Electrochem. Soc. 108, 649 (1961).

    Article  Google Scholar 

  31. J. Bloem, Y.S. Oei, H.H.C. Demoor, J.H.L. Hanssen, and L.J. Giling, J. Electrochem. Soc. 132, 1973 (1985).

    Article  Google Scholar 

  32. S. Wagner and R.G. Treuting, J. Appl. Phys. 32, 2490 (1961).

    Article  Google Scholar 

  33. E.S. Greiner, J.A. Gutowski, and W.C. Ellis, J. Appl. Phys. 32, 2489 (1961).

    Article  Google Scholar 

  34. W. Shi, H. Peng, N. Wang, C.P. Li, L. Xu, C.S. Lee, R. Kalish, and S.T. Lee, J. Am. Chem. Soc. 123, 11095–11096 (2001).

    Article  Google Scholar 

  35. B.N. Mbenkum, A.S. Scheider, G. Schutz, C. Xu, G. Richter, P.A. van Aken, G. Majer, and J.P. Spatz, ACS Nano 4, 1805–1812 (2010).

    Article  Google Scholar 

  36. J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, W. Weng, G. Han, and G. Zhao, Nanotechnology 18, 345605 (2007).

    Article  Google Scholar 

  37. G.S. Doerk, V. Radmilovic, and R. Maboudian, Appl. Phys. Lett. 96, 123117 (2010).

    Article  Google Scholar 

  38. H.G. Chen, L. Chang, S. Cho, J. Yan, and C. Lu, Chem. Vap. Depos. 14, 247–255 (2008).

    Article  Google Scholar 

  39. R. Jagannathan, R.V. Mehta, J.A. Timmons, and D.L. Black, Phys. Rev. B 48, 13261–13265 (1993).

    Article  Google Scholar 

  40. T.I. Kamins, D.A.A. Ohlberg, and R. Stanley Williams, J. Appl. Phys. 96, 5195–5201 (2004).

    Article  Google Scholar 

  41. M.A.U. Usman, B. Smith, J.B. Jackson, M.C. DeLong, and M.S. Miller, AIP Adv. 3, 032112 (2013).

    Article  Google Scholar 

  42. L.Ren, H.Li, and L. Ma, The Selective Growth of Silicon Nanowires and their Optical Activation, InTech, Chapter 17 2011.

  43. K. Holloway and R. Sinclair, J. Appl. Phys. 61, 15 (1987).

    Article  Google Scholar 

  44. B.D. Sosnowchik, L. Lin, and O. Englander, J. Appl. Phys. 107, 051101 (2010).

    Article  Google Scholar 

  45. K. Molhave, B.A. Wacaser, D.H. Petersen, J.B. Wagner, L. Samuelson, and P. Boggild, Small 4, 1741 (2008).

    Article  Google Scholar 

  46. S. Kodambaka, J. Tersoff, M.C. Reuter, and F.M. Ross, Phys. Rev. Lett. 96, 096105 (2006).

    Article  Google Scholar 

  47. M.A.U. Usman and B. Smith, Proc. SPIE 7591, 759115 (2010).

    Article  Google Scholar 

  48. A.I. Bennett and R.L. Longini, Phys. Rev. 116, 53–61 (1959).

    Article  Google Scholar 

  49. D.R. Hamilton and R.G. Seidensticker, J. Appl. Phys. 31, 1165 (1960).

    Article  Google Scholar 

  50. E.S. Greiner, J.A. Gutowski, and W.C. Ellis, J. Appl. Phys. 32, 2489–2490 (1961).

    Article  Google Scholar 

  51. W.J.P. van Enckevart and M.W.M. Graef, J. Electrochem. Soc. 128, 154–161 (1981).

    Article  Google Scholar 

  52. K. Fujiwara, K. Maeda, N. Usami, and K. Nakajima, Phys. Rev. Lett. 101, 055503 (2008).

    Article  Google Scholar 

  53. J. Pohl, M. Muller, A. Seidl, and K. Albe, J. Cryst. Growth 312, 1411 (2010).

    Article  Google Scholar 

  54. K. Fujiwara, K. Maed, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido, and K. Nakajima, Acta Mater. 56, 2663 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) and University of Utah Research Foundation. M.A.U.U. and B.J.S. acknowledge support from graduate research fellowships in performing this research in the University of Utah laboratories. Support from the Brigham Young University Microscopy facility and use of the electron microscopy instruments are also fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. U. Usman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M.A.U., Smith, B.J., Jackson, J.B. et al. Titanium-Catalyzed Silicon Nanostructures Grown by APCVD. J. Electron. Mater. 44, 38–49 (2015). https://doi.org/10.1007/s11664-014-3493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3493-7

Keywords

Navigation