Skip to main content

Advertisement

Log in

Effect of Hydrogen in Size-Limited Growth of Graphene by Atmospheric Pressure Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Analysis of graphene domain synthesis explains the main graphene growth process. Size-limited graphene growth caused by hydrogen is studied to achieve efficient graphene synthesis. Graphene synthesis on Cu foils via the chemical vapor deposition method using methane as carbon source is limited by high hydrogen concentration. Results indicate that hydrogen affects graphene nucleation, the growth rate, and the final domain size. Considering the role of hydrogen as both activator and etching reagent, we build a model to explain the cause of this low graphene growth rate for high hydrogen partial pressure. A two-step method is proposed to control the graphene nucleation and growth rate separately. Half the time is required to obtain similar domain size compared with single-step synthesis, indicating improved graphene synthesis efficiency. The change of the partial pressure and transmission time between the two steps is a factor that cannot be ignored to control the graphene growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, Science 5934, 324 (2009).

    Google Scholar 

  2. L. Zhao, K.T. Rim, H. Zhou, R. He, T.F. Heinz, A. Pinczuk, G.W. Flynn, and A.N. Pasupathy, Solid State Commun. 7, 151 (2011).

    Google Scholar 

  3. H. An, W.G. Lee, and J. Jung, Curr. Appl. Phys. 4, 12 (2012).

    Google Scholar 

  4. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 8, 5 (2010).

    Google Scholar 

  5. S.S. Chen, W.W. Cai, R.D. Piner, J.W. Suk, Y.P. Wu, Y.J. Ren, J.Y. Kang, and R.S. Ruoff, Nano Lett. 9, 11 (2011).

    Google Scholar 

  6. R.S. Edwards and K.S. Coleman, Acc. Chem. Res. 1, 46 (2013).

    Google Scholar 

  7. A. Reina, S. Thiele, X.T. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, and J. Kong, Nano Res. 6, 2 (2009).

    Google Scholar 

  8. L.G. De Arco, Y. Zhang, A. Kumar, and C.W. Zhou, IEEE Trans. Nanotechnol. 2, 8 (2009).

    Google Scholar 

  9. X.S. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, and R.S. Ruoff, J. Am. Chem. Soc. 9, 133 (2011).

    Google Scholar 

  10. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 5932, 324 (2009).

    Google Scholar 

  11. J.Y. Hwang, C.C. Kuo, L.C. Chen, and K.H. Chen, Nanotechnology 46, 21 (2010).

    Google Scholar 

  12. J.M. Wofford, S. Nie, K.F. McCarty, N.C. Bartelt, and O.D. Dubon, Nano Lett. 12, 10 (2010).

    Google Scholar 

  13. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon 13, 49 (2011).

    Google Scholar 

  14. Z.G. Wang, Y.F. Chen, P.J. Li, X. Hao, Y. Fu, K. Chen, L.X. Huang, and D. Liu, Vacuum 7, 86 (2012).

    Google Scholar 

  15. B.S. Hu, H. Ago, C.M. Orofeo, Y. Ogawa, and M. Tsuji, New J. Chem. 1, 36 (2012).

    Google Scholar 

  16. H.S. Song, S.L. Li, H. Miyazaki, S. Sato, K. Hayashi, A. Yamada, N. Yokoyama, and K. Tsukagoshi, Sci. Rep.-UK 2 (2012).

  17. Z. Yan, J. Lin, Z.W. Peng, Z.Z. Sun, Y. Zhu, L. Li, C.S. Xiang, E.L. Samuel, C. Kittrell, and J.M. Tour, ACS Nano 10, 6 (2012).

    Google Scholar 

  18. B. Wu, D.C. Geng, Z.P. Xu, Y.L. Guo, L.P. Huang, Y.Z. Xue, J.Y. Chen, G. Yu, and Y.Q. Liu, NPG Asia Mater. 5, e36 (2013).

    Article  Google Scholar 

  19. Y. Zhang, Z. Li, P. Kim, L.Y. Zhang, and C.W. Zhou, ACS Nano 7, 6 (2012).

    Google Scholar 

  20. E. Meca, J. Lowengrub, H. Kim, C. Mattevi, and V.B. Shenoy, Nano Lett. 11, 13 (2013).

    Google Scholar 

  21. R.M. Jacobberger and M.S. Arnold, Chem. Mater. 6, 25 (2013).

    Google Scholar 

  22. Y.C. Shin and J. Kong, Carbon 59, 439 (2013).

    Article  Google Scholar 

  23. X.Y. Zhang, L. Wang, J. Xin, B.I. Yakobson, and F. Ding, J.␣Am. Chem. Soc. 8, 136 (2014).

    Google Scholar 

  24. T.R. Wu, G.Q. Ding, H.L. Shen, H.M. Wang, L. Sun, D. Jiang, X.M. Xie, and M.H. Jiang, Adv. Funct. Mater. 2, 23 (2013).

    Article  Google Scholar 

  25. S.S. Chen, H.X. Ji, H. Chou, Q.Y. Li, H.Y. Li, J.W. Suk, R. Piner, L. Liao, W.W. Cai, and R.S. Ruoff, Adv. Mater. 14, 25 (2013).

    Article  Google Scholar 

  26. Y.F. Hao, M.S. Bharathi, L. Wang, Y.Y. Liu, H. Chen, S.␣Nie, X.H. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff, Science 6159, 342 (2013).

    Google Scholar 

  27. X.S. Li, C.W. Magnuson, A. Venugopal, J.H. An, J.W. Suk, B.Y. Han, M. Borysiak, W.W. Cai, A. Velamakanni, Y.W. Zhu, L.F. Fu, E.M. Vogel, E. Voelkl, L. Colombo, and R.S. Ruoff, Nano Lett. 11, 10 (2010).

    Google Scholar 

  28. E. Dervishi, Z.R. Li, J. Shyaka, F. Watanabe, A. Biswas, J.L. Umwungeri, A. Courte, A.R. Biris, O. Kebdani, and A.S. Biris, Chem. Phys. Lett. 4–6, 501 (2011).

    Google Scholar 

  29. S. Bhaviripudi, X.T. Jia, M.S. Dresselhaus, and J. Kong, Nano Lett. 10, 10 (2010).

    Article  Google Scholar 

  30. C. Hwang, K. Yoo, S.J. Kim, E.K. Seo, H. Yu, and L.P. Biro, J. Phys. Chem. C 45, 115 (2011).

    Google Scholar 

  31. I. Vlassiouk, M. Regmi, P.F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 7, 5 (2011).

    Google Scholar 

  32. L.B. Gao, W.C. Ren, J.P. Zhao, L.P. Ma, Z.P. Chen, and H.M. Cheng, Appl. Phys. Lett. 18, 97 (2010).

    Google Scholar 

  33. X.F. Zhang, J. Ning, X.L. Li, B. Wang, L. Hao, M.H. Liang, M.H. Jin, and L.J. Zhi, Nanoscale 18, 5 (2013).

    Google Scholar 

  34. T. Ma, W.C. Ren, X.Y. Zhang, Z.B. Liu, Y. Gao, L.C. Yin, X.L. Ma, F. Ding, and H.M. Cheng, Proc. Natl. Acad. Sci. USA 51, 110 (2013).

    Google Scholar 

  35. S. Choubak, M. Biron, P.L. Levesque, R. Martel, and P. Desjardins, J. Phys. Chem. Lett. 7, 4 (2013).

    Google Scholar 

  36. X.H. Kong, H.X. Ji, R.D. Piner, H.F. Li, C.W. Magnuson, C. Tan, A. Ismach, H. Chou, and R.S. Ruoff, Appl. Phys. Lett. 4, 103 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science and Technology Major Project (Grant No. 2011ZX02707), National Natural Science Foundation of China (No. 61136005), Chinese Academy of Sciences (Grant No. KGZD-EW-303), and Shanghai Government (Grant No. 12JC1403900 and 12JC1410100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Wang, B. et al. Effect of Hydrogen in Size-Limited Growth of Graphene by Atmospheric Pressure Chemical Vapor Deposition. J. Electron. Mater. 44, 79–86 (2015). https://doi.org/10.1007/s11664-014-3415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3415-8

Keywords

Navigation