Skip to main content
Log in

Effect of intermittent oxygen exposure on chemical vapor deposition of graphene

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Chemical vapor deposition is the most proficient method for growing graphene on copper foils due to its scalability, repeatability, and uniformity, etc. Herein, we systematically study the effect of oxygen (O2) exposure on graphene growth. We introduced O2 before and during the growth, and then studied its effects on the morphology, crystallinity, and nucleation density of graphene. We observe that introducing O2 during growth significantly improves the graphene crystallinity while pre-dosing O2 before growth reduces the graphene nucleation density. These studies suggest that intermittent O2 exposure play a significant role in graphene growth, enabling scalable production of high-quality graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P.R. Wallace: The band theory of graphite. Phys. Rev. 71, 622 (1947).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  3. K. Ziegler: Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802 (2006).

    Article  CAS  Google Scholar 

  4. S.D. Sarma, S. Adam, E.H. Hwang, and E. Rossi: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).

    Article  Google Scholar 

  5. R.S. Shishir and D.K. Ferry: Intrinsic mobility in graphene. J. Phys., Condens. Matter. 21, 232204 (2009).

    Article  CAS  Google Scholar 

  6. L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, and C. Stampfer: Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article  Google Scholar 

  7. A. Zandiatashbar, G.-H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C.R. Picu, J. Hone, and N. Koratkar: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article  Google Scholar 

  8. X. Li, L. Colombo, and R.S. Ruoff: Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247 (2016).

    Article  CAS  Google Scholar 

  9. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, and T. Seyller: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).

    Article  CAS  Google Scholar 

  10. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).

    Article  CAS  Google Scholar 

  11. C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, and L.J. Li: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332 (2011).

    Article  CAS  Google Scholar 

  12. G.H. Han, F. Gunes, J.J. Bae, E.S. Kim, S.J. Chae, H.J. Shin, J.Y. Choi, D. Pribat, and Y.H. Lee: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144 (2011).

    Article  CAS  Google Scholar 

  13. I. Vlassiouk, S. Smirnov, M. Regmi, S.P. Surwade, N. Srivastava, R. Feenstra, G. Eres, C. Parish, N. Lavrik, P. Datskos, S. Dai, and P. Fulvio: Graphene nucleation density on copper: fundamental role of background pressure. J. Phys. Chem. C 117, 18919 (2013).

    Article  CAS  Google Scholar 

  14. P. Zhao, Y. Cheng, D. Zhao, K. Yin, X. Zhang, M. Song, S. Yin, Y. Song, P. Wang, M. Wang, Y. Xia, and H. Wang: The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals. Nanoscale 8, 7646 (2016).

    Article  CAS  Google Scholar 

  15. Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013).

    Article  CAS  Google Scholar 

  16. S.M. Kim, A. Hsu, Y.H. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong: The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013).

    Article  Google Scholar 

  17. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K.P. Loh: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927 (2011).

    Article  CAS  Google Scholar 

  18. A.C. Ferrari: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  19. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008).

    Article  CAS  Google Scholar 

  20. L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).

    Article  CAS  Google Scholar 

  21. Z. Mutlu, S. Shahrezaei, S. Temiz, M. Ozkan, and C.S. Ozkan: Facile synthesis and characterization of two dimensional layered tin disulfide nanowalls. J. Electron. Mater. 45, 2115 (2016).

    Article  CAS  Google Scholar 

  22. K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M.F. Crommie, M.L. Cohen, S.G. Louie, and A. Zettl: Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).

    Article  Google Scholar 

  23. Z. Mutlu, R.J. Wu, D. Wickramaratne, S. Shahrezaei, C. Liu, S. Temiz, A. Patalano, M. Ozkan, R.K. Lake, K.A. Mkhoyan, and C.S. Ozkan: Phase engineering of 2D tin sulfides. Small 12, 2998 (2016).

    Article  CAS  Google Scholar 

  24. Z. Mutlu, I. Ruiz, R. Wu, R. Ionescu, S. Shahrezaei, S. Temiz, M. Ozkan, A.K. Mkhoyan, and C. S. Ozkan: Chemical vapor deposition of partially oxidized graphene. RSC Adv. 7, 32209 (2017).

    Article  CAS  Google Scholar 

  25. I. Childres, L.A. Jauregui, W. Park, H. Cao, and Y.P. Chen: Raman spectroscopy of graphene and related materials. In New Developments in Photon and Materials Research, edited by J.I. Jang (Nova Science, 2013), pp. 1–20.

    Google Scholar 

  26. Z. Ni, Y. Wang, T. Yu, and Z. Shen: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008).

    Article  CAS  Google Scholar 

  27. D. Ferrah, O. Renault, C. Petit-Etienne, H. Okuno, C. Berne, V. Bouchiat, and G. Cunge: XPS investigations of graphene surface cleaning using H2- and Cl2-based inductively coupled plasma. Surf. Interface Anal. 48, 451 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the STARnet center C-SPIN (Center for Spintronic Materials, Interfaces and Novel Architectures), through the Semiconductor Research Corporation sponsored by the MARCO (Microelectronics Advanced Research Corporation) and the DARPA (Defense Advanced Research Projects Agency). X-ray photoelectron spectroscopy (XPS) was performed at the Analytical Chemistry Instrumentation Facility (ACIF) of the University of California, Riverside, which receives support from the NSF (National Science Foundation) through the MRI (Major Research Instrumentation) program (DMR-0958796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz S. Ozkan.

Supporting Information

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, S., Mutlu, Z., Shahrezaei, S. et al. Effect of intermittent oxygen exposure on chemical vapor deposition of graphene. MRS Communications 7, 826–831 (2017). https://doi.org/10.1557/mrc.2017.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.111

Navigation