Skip to main content

Advertisement

Log in

Agitation Effect on the Rheological Behavior of Lithium-Ion Battery Slurries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We analyzed the rheological and morphological characteristics of a multicomponent slurry system consisting of an active material, conductive additive, and binder. The effect of storage time and agitation on the rheological properties was investigated. In particular, we concentrated on the yield stress and power law index to demonstrate the change in the internal structure of slurries. The results show that the internal structure degrades with time and is deteriorated by mechanical agitation. To verify the internal structure, the slurry samples were freeze-dried, and field-emission scanning electron microscopy and energy-dispersive spectroscopy analyses were carried out. The morphological observations were in accordance with the rheological results obtained by simple shear, thixotropic, and viscoelastic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Chen and J.R. Dahn, Electrochem. Solid State Lett. 5, A213–A216 (2002).

    Article  Google Scholar 

  2. S.J. Bai and Y.S. Song, Anal. Chem. 85, 3918–3925 (2013).

    Article  Google Scholar 

  3. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, J. Power Sources 165, 491–499 (2007).

    Article  Google Scholar 

  4. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Solid State Ion. 83, 167–173 (1996).

    Article  Google Scholar 

  5. J. Cho, Y.J. Kim, and B. Park, J. Electrochem. Soc. 148, A1110–A1115 (2001).

    Article  Google Scholar 

  6. H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, and D. Golberg, Chem. Commun. 48, 4878–4880 (2012).

    Article  Google Scholar 

  7. J.K. Hong, J.H. Lee, and S.M. Oh, J. Power Sources 111, 90–96 (2002).

    Article  Google Scholar 

  8. J.T. Lee, Y.J. Chu, X.W. Peng, F.M. Wang, C.R. Yang, and C.C. Li, J. Power Sources 173, 985–989 (2007).

    Article  Google Scholar 

  9. M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, and Y.M. Chiang, Adv. Energy Mater. 1, 511–516 (2011).

    Article  Google Scholar 

  10. K.Y. Cho, Y.I. Kwon, J.R. Youn, and Y.S. Song, Analyst 138, 2044–2050 (2013).

    Article  Google Scholar 

  11. J.R. Owen, Chem. Soc. Rev. 26, 259–267 (1997).

    Article  Google Scholar 

  12. G. Liu, H. Zheng, A.S. Simens, A.M. Minor, X. Song, and V.S. Battaglia, J. Electrochem. Soc. 154, A1129–A1134 (2007).

    Article  Google Scholar 

  13. T. Nagaura and K. Tozawa, Prog. Batter. Solar Cells 9, 209–217 (1990).

    Google Scholar 

  14. H. Zheng, R. Yang, G. Liu, X. Song, and V.S. Battaglia, J.␣Phys. Chem. C 116, 4875–4882 (2012).

    Article  Google Scholar 

  15. Y. Zhao, X. Liu, H. Li, T. Zhai, and H. Zhou, Chem. Commun. 48, 5079–5081 (2012).

    Article  Google Scholar 

  16. C.A. Shook and M.C. Roco, Slurry Flow: Principles and Practice (Boston: Butterworth-Heinemann, 1991).

    Google Scholar 

  17. R.I. Tanner, Engineering Rheology (New York: Oxford University Press, 1988).

    Google Scholar 

  18. R.M. Muthiah, R. Manjari, V.N. Krishnamurthy, and B.R. Gupta, Polym. Eng. Sci. 31, 61–66 (1991).

    Article  Google Scholar 

  19. A.H.P. Skelland, Non-Newtonian Flow and Heat Transfer (New York: Wiley, 1967).

    Google Scholar 

  20. R.G. Larson, The Structure and Rheology of Complex Fluids (New York: Oxford University Press, 1999).

    Google Scholar 

  21. G.W. Lee, J.H. Ryu, W. Han, K.H. Ahn, and S.M. Oh, J.␣Power Sources 195, 6049–6054 (2010).

    Article  Google Scholar 

  22. C.G. Fonseca, R.M.F. Basaglia, M.C. Brant, T. Matencio, and R.Z. Domingues, Powder Technol. 192, 352–358 (2009).

    Article  Google Scholar 

  23. A. Lele, M. Mackley, G. Galgali, and C. Ramesh, J. Rheol. 46, 1091–1110 (2002).

    Article  Google Scholar 

  24. P. Coussot and C. Ancey, Phys. Rev. E 59, 4445–4457 (1999).

    Article  Google Scholar 

  25. H.A. Barnes, J.F. Hutton, and K. Walter, An Introduction to Rheology (New York: Elsevier, 1989).

    Google Scholar 

  26. G.R. Burgos, A.N. Alexandrou, and V. Entov, J. Mater. Process. Technol. 110, 164–176 (2001).

    Article  Google Scholar 

  27. B.A. Horri, D. Dong, C. Selomulya, and H. Wang, Powder Technol. 223, 116–122 (2012).

    Article  Google Scholar 

  28. C.C. Li, J.T. Lee, and X.W. Peng, J. Electrochem. Soc. 153, A809–A815 (2006).

    Article  Google Scholar 

  29. E. Ligneel, B. Lestriez, and D. Guyomard, J. Power Sources 174, 716–719 (2007).

    Article  Google Scholar 

  30. P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment (Hoboken: Wiley, 2005).

    Book  Google Scholar 

  31. Y.S. Song, Polym. Eng. Sci. 46, 1350–1357 (2006).

    Article  Google Scholar 

  32. Y.S. Song, Rheol. Acta 46, 231–238 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Dankook University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y.I., Kim, J.D. & Song, Y.S. Agitation Effect on the Rheological Behavior of Lithium-Ion Battery Slurries. J. Electron. Mater. 44, 475–481 (2015). https://doi.org/10.1007/s11664-014-3349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3349-1

Keywords

Navigation