Skip to main content
Log in

Sn-Zn/Ni-Co Interfacial Reactions at 250°C

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study examines interfacial reactions of Sn-xZn/Ni-yCo (x = 2 wt.%, 5 wt.%, 9 wt.%, y = 5–10 wt.%) carried out at 250°C. Sn-Zn solders are promising lead-free solders, and Ni-Co alloys are potential alternative diffusion barrier layer materials for use in flip chip packaging of Cu/low-k integrated circuits. Sn-Zn/Ni-Co interfacial reactions depend on the competition between Co and Zn. When Co addition is 5–9 wt.%, the effect is less than that of Zn. Sn-Co intermetallics are not formed, and the reaction phase is Ni3Sn4 or the γ-Ni5Zn21 phase. On the other hand, when Co is added at 10 wt.%, the effect is greater than that of Zn, and Co dominates the interfacial reaction. The reaction phase is then CoSn2 or the β-Co5Zn21 phase. Similar to Sn-Zn/Ni interfacial reactions, Zn-Ni and Zn-Co intermetallics are not formed as the Zn content is 2 wt.%. When Zn addition exceeds 5 wt.%, the species affects the Sn-Zn/Ni-Co interfacial reactions. The reaction phase is the γ-Ni5Zn21 or the β-Co5Zn21 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R Rep. 49, 1–60 (2005).

    Article  Google Scholar 

  2. C.C. Chen, S.W. Chen, and C.H. Chang, J. Mater. Res. 23, 27–43 (2008).

    Article  Google Scholar 

  3. S.W. Yoon, V. Kripesh, S.Y.J. Jeffery, and M.K. Iyer, J. Electron. Mater. 33, 1144–1155 (2004).

    Article  Google Scholar 

  4. A. Kumar, M. Kumar, and D. Kumar, Microelectron. Eng. 87, 387–390 (2010).

    Article  Google Scholar 

  5. W.C. Wu, T.E. Hsieh, and H.C. Pan, J. Electrochem. Soc. 155, 369–376 (2008).

    Article  Google Scholar 

  6. Y.T. Chen, Y.T. Chan, and C.C. Chen, J. Alloy Compd. 507, 419–424 (2010).

    Article  Google Scholar 

  7. K. Suganuma and K.S. Kim, J. Mater. Sci. Mater. Electron. 18, 121–127 (2007).

    Article  Google Scholar 

  8. C.H. Wang, H.H. Chen, and W.H. Lai, J. Electron. Mater. 40, 2436–2444 (2011).

    Article  Google Scholar 

  9. C.H. Wang and H.H. Chen, J. Electron. Mater. 39, 2375–2381 (2010).

    Article  Google Scholar 

  10. W.K. Liou, Y.W. Yen, and C.C. Jao, J. Electron. Mater. 38, 2222–2227 (2009).

    Article  Google Scholar 

  11. M.Y. Chiu, S.S. Wang, and T.H. Chuang, J. Electron. Mater. 31, 494–499 (2002).

    Article  Google Scholar 

  12. W.J. Zhu, H.S. Liu, J.S. Wang, G. Ma, and Z.P. Jin, J. Electron. Mater. 39, 209–214 (2010).

    Article  Google Scholar 

  13. C.Y. Chou, S.W. Chen, and Y.S. Chang, J. Mater. Res. 21, 1849–1856 (2006).

    Article  Google Scholar 

  14. X.F. Zhang, J.D. Guo, and J.K. Shang, J. Electron. Mater. 38, 425–429 (2009).

    Article  Google Scholar 

  15. S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, J. Mater. Res. 21, 2436–2439 (2006).

    Article  Google Scholar 

  16. M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, J. Mater. Res. 19, 2887–2896 (2004).

    Article  Google Scholar 

  17. M.Y. Tsai, S.C. Yang, Y.W. Wang, and C.R. Kao, J. Alloy Compd. 494, 123–127 (2010).

    Article  Google Scholar 

  18. R. Mayappan and Z.A. Ahmad, Intermetallics 18, 730–735 (2010).

    Article  Google Scholar 

  19. P. Sun, C. Ander, X. Wei, Z. Cheng, and D. Shang, J. Alloy Compd. 437, 169–179 (2007).

    Article  Google Scholar 

  20. C.H. Chen, C.P. Lin, and C.M. Chen, J. Electron. Mater. 38, 61–69 (2009).

    Article  Google Scholar 

  21. C.W. Huanga and K.L. Lin, J. Mater. Res. 19, 3560–3568 (2004).

    Article  Google Scholar 

  22. T.C. Chang, M.C. Wang, and M.H. Hon, J. Cryst. Growth 250, 236–243 (2003).

    Article  Google Scholar 

  23. K.S. Kim, J.M. Yang, C.H. Yu, I.O. Jung, and H.H. Kim, J. Alloy Compd. 379, 314–318 (2004).

    Article  Google Scholar 

  24. W.K. Liou and Y.W. Yen, Intermetallics 17, 72–78 (2009).

    Article  Google Scholar 

  25. C.C. Yen, Y.W. Yen, C.Y. Lin, and C. Lee, Intermetallics 16, 463–469 (2008).

    Article  Google Scholar 

  26. C.C. Chen, Y.T. Chan, and Y.T. Chen, J. Mater. Res. 25, 1321–1328 (2010).

    Article  Google Scholar 

  27. S.W. Chen, Y.K. Chen, H.J. Wu, Y.C. Huang, and C.M. Chen, J. Electron. Mater. 39, 2418–2428 (2010).

    Article  Google Scholar 

  28. P. Nash and Y.Y. Pan, Phase Diagrams of Binary Nickel Alloys, ed. P. Nash (Materials Park, OH: ASM International, 1991), pp. 382–390.

    Google Scholar 

  29. T. Nishizawa and K. Ishida, Binary Alloy Phase Diagrams, vol. 2, ed. T.B. Massalski (Materials Park, OH: ASM International, 2007), pp. 1214–1215.

    Google Scholar 

  30. P. Nash, A. Nash.Phase Diagrams of Binary Nickel Alloys, ed. P. Nash (Materials Park, OH: ASM International, 1991), pp. 310–318.

    Google Scholar 

  31. J.W. Chang, S.K. Seo, and H.M. Lee, J. Electron. Mater. 39, 2643–2652 (2010).

    Article  Google Scholar 

  32. JCPDS # 65-2313.

  33. H.M. Lin and J.G. Duh, Surf. Coat. Technol. 206, 1941–1946 (2010).

    Article  Google Scholar 

  34. JCPDS # 04-0888.

  35. S.-W. Chen, C.-M. Hsu, C.-Y. Chou, and C.-W. Hsu, Prog. Nat. Sci.: Mater. Int. 21, 386–391 (2011).

  36. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, Binary Alloy Phase Diagrams, Vol. 3, ed. T.B. Massalski (Materials Park, OH: ASM International, 2007), pp. 3416–3417.

    Google Scholar 

  37. A. Lang and W. Jeitschko, Z. Metallkd. 87, 759–764 (1996).

    Google Scholar 

  38. Y.H. Chao, S.W. Chen, C.H. Chang, and C.C. Chen, Metall. Mater. Trans. A 39, 477–489 (2008).

    Article  Google Scholar 

  39. JCPDS #65-2697.

  40. C.C. Chen and Y.T. Chan, Intermetallics 18, 649–654 (2010).

    Article  Google Scholar 

  41. T. B. Massalski, in Binary Alloy Phase Diagrams Vol. 2, ed. T. B. Massalski (ASM International, Materials Park, OH, 2007), pp. 1261–1264.

  42. JCPDS #04-0882.

  43. JCPDS #04-0887.

  44. M. Amagai, Microelectron. Reliab. 48, 1–16 (2008).

    Article  Google Scholar 

  45. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39–46 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Science Council for their financial support (Grant # NSC98-2221-E-033-074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-chi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Hf., Chang, Yc. & Chen, Cc. Sn-Zn/Ni-Co Interfacial Reactions at 250°C. J. Electron. Mater. 43, 3333–3340 (2014). https://doi.org/10.1007/s11664-014-3232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3232-0

Keywords

Navigation