Skip to main content
Log in

Comparison of Continuously- and Step-Graded ZnS y Se1−y /GaAs (001) Metamorphic Buffer Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design of metamorphic buffer layers for semiconductor devices with reduced defect densities requires control of lattice relaxation and dislocation dynamics. Graded layers are beneficial for the design of these buffers because they reduce the threading dislocation density by (1) allowing the distribution of the misfit dislocations throughout the buffer layer therefore reducing pinning interactions, and (2) enhancing mobility from the high built-in surface strain which helps to sweep out threading arms. In this work, we considered heterostructures involving a linearly-graded (type A) or step-graded (type B) buffer grown on a GaAs (001) substrate. For each structure type, we studied the equilibrium configuration and the kinetically-limited lattice relaxation and non-equilibrium threading dislocations by utilizing a dislocation dynamics model. In this work, we have also considered heterostructures involving a constant composition ZnS y Se1−y device layer grown on top of a GaAs (001) substrate with an intermediate buffer layer of linearly-graded (type C) or step-graded (type D) ZnS y Se1−y . For each structure type, we studied the requirements on the thickness and compositional profile in the buffer layer for the elimination of all mobile threading dislocations from the device layer by the dislocation compensation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-S. Lee and W.-T. Chien, J. Electrochem. Soc. 158, H452 (2011).

    Article  Google Scholar 

  2. H. Yang, H. Wang, and C.L. Tan, IEEE Trans. Electron Dev. 51, 1221 (2004).

    Article  Google Scholar 

  3. J.-H. Tsai, J. Electrochem. Soc. 158, H889 (2011).

    Article  Google Scholar 

  4. W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, S.M. Lardizabel, Y. Yang, J.H. Jang, I. Adesida, C. Xu, and K.C. Hsieh, J. Cryst. Growth 251, 804 (2003).

    Article  Google Scholar 

  5. G. Belenky, D. Wang, Y. Lin, D. Donetsky, G. Kipshidze, L. Shterengas, D. Westerfeld, W.L. Sarney, and S. Svensson, Appl. Phys. Lett. 102, 111108 (2013).

    Article  Google Scholar 

  6. T. Hosoda, D. Wang, G. Kipshidze, W.L. Sarney, L. Shterengas, and G. Belenky, Semicond. Sci. Technol. 27, 055011 (2012).

    Article  Google Scholar 

  7. M. Arai, Y. Kondo, S. Kanazawa, T. Tadokoro, and M. Kohtoku, 2012 Conference on Lasers and Electro-Optics (CLEO), (2012), p. 2.

  8. L.J. Mawst, J.D. Kirch, C.-C. Chang, T. Kim, T. Garrod, D. Botez, S. Ruder, T.F. Kuech, T. Earles, R. Tatavari, N. Pan, and A. Wibowo, J. Cryst. Growth 370, 230 (2013).

    Article  Google Scholar 

  9. I. Mathews, D. O’Mahoney, A. Gocalinska, M. Manganaro, E. Pelucchi, H. Schmidt, A.P. Morrison, and B. Corbett, Appl. Phys. Lett. 102, 033906 (2013).

    Article  Google Scholar 

  10. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993).

    Article  Google Scholar 

  11. J. Tersoff, J. Appl. Phys. Lett. 64, 2748 (1994).

    Article  Google Scholar 

  12. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.W. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992).

    Article  Google Scholar 

  13. D. Richman and J.J. Tietjen, Trans. Metall. Soc. AIME 239, 418 (1967).

    Google Scholar 

  14. J.J. Tietjen, J.I. Pankove, I.J. Hegyi, and H. Nelson, Trans. Metall. Soc. AIME 239, 385 (1968).

    Google Scholar 

  15. C.J. Nuese, J.J. Tietjen, J.J. Gannon, and H.F. Gossenberger, Trans. Metall. Soc. AIME 242, 400 (1968).

    Google Scholar 

  16. M.S. Abrahams, L.R. Weisberg, C.J. Buiocchi, and J. Blanc, J. Mater. Sci. 4, 223 (1969).

    Article  Google Scholar 

  17. R.M. Biefeld, C.R. Hills, and S.R. Lee, J. Cryst. Growth 91, 515 (1988).

    Article  Google Scholar 

  18. F.K. LeGoues, B.S. Meyerson, and J.F. Morar, Phys. Rev. Lett. 66, 2903 (1991).

    Article  Google Scholar 

  19. K.L. Kavanagh, J.C. Chang, J. Chen, J.M. Fernandez, and H.H. Wieder, J. Vac. Sci. Technol. B 10, 1820 (1992).

    Article  Google Scholar 

  20. F. Schaffler, D. Tobben, H.-J. Herzog, G. Abstreiter, and B. Hollander, Semicond. Sci. Technol. 7, 260 (1992).

    Article  Google Scholar 

  21. A. Sacedon, F. Gonzalez-Sanz, E. Calleja, E. Munoz, S.I. Molina, F.J. Pacheco, D. Araujo, R. Garcia, M. Lourenco, Z. Yang, P. Kidd, and D. Dunstan, Appl. Phys. Lett. 66, 3334 (1995).

    Article  Google Scholar 

  22. M. Ohkubo, A. Iketani, T. Ijichi, and T. Kikuta, Appl. Phys. Lett. 59, 2697 (1991).

    Article  Google Scholar 

  23. P.M. Mooney, J.L. Jordan-Sweet, J.O. Chu, and F.K. LeGoues, Appl. Phys. Lett. 66, 3642 (1995).

    Article  Google Scholar 

  24. M.K. Hudait, Y. Lin, D.M. Wilt, J.S. Speck, C.A. Tivarus, E.R. Heller, J.P. Pelz, and S.A. Ringel, Appl. Phys. Lett. 82, 3212 (2003).

    Article  Google Scholar 

  25. L.J. Mawst, P. Dudley, J. Kirch, T. Kim, S. Ruder, T.F. Kuech, and R. Tatavarti. 2011 37th IEEE Photovoltaic Specialists Conference (PVSC), (2011), p. 517.

  26. P. Kidd, D.J. Dunstan, H.G. Colson, M.A. Loureno, A. Sacedon, F. Gonzalez-Sanz, L. Gonzalez, Y. Gonzalez, R. Garcia, D. Gonzalez, F.J. Pacheco, and P.J. Goodhew, J. Cryst. Growth 169, 649 (1996).

    Article  Google Scholar 

  27. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, Appl. Phys. Lett. 92, 231916 (2008).

    Article  Google Scholar 

  28. J.I. Chyi, J.L. Shieh, J.W. Pan, and R.M. Lin, J. Appl. Phys. 79, 8367 (1996).

    Article  Google Scholar 

  29. C.M. Serrano and C. Chang, Appl. Phys. Lett. 39, 808 (1981).

    Article  Google Scholar 

  30. K. Rammohan, D.H. Rich, R.S. Goldman, J. Chen, H.H. Wieder, and K.L. Kavanagh, Appl. Phys. Lett. 66, 869 (1995).

    Article  Google Scholar 

  31. E.F. Chor and C.J. Peng, Electron. Lett. 32, 1409 (1996).

    Article  Google Scholar 

  32. A. Bosacchi, A.C. De Riccardis, P. Frigeri, S. Franchi, C. Ferrari, S. Gennari, L. Lazzarini, L. Nasi, G. Salviati, A.V. Drigo, and F. Romanato, J. Cryst. Growth, 175/176, 1009 (1997).

  33. H. Choi, Y. Jeong, J. Cho, and M.H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  Google Scholar 

  34. B. Bertoli, D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 108, 113525 (2010).

    Article  Google Scholar 

  35. S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 40, 2348 (2011).

    Article  Google Scholar 

  36. T. Kujofsa, A. Antony, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 3408 (2013).

    Article  Google Scholar 

  37. T. Kujofsa, W. Yu, S. Cheruku, B. Outlaw, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 41, 2993 (2012).

    Article  Google Scholar 

  38. J.W. Matthews, S. Mader, and T.B. Light, J. Appl. Phys. 41, 3800 (1970).

    Article  Google Scholar 

  39. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  Google Scholar 

  40. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 52, 852 (1988).

    Article  Google Scholar 

  41. D.C. Houghton, J. Appl. Phys. 70, 2136 (1991).

    Article  Google Scholar 

  42. T. Sasaki, H. Suzuki, A. Sai, M. Takahasi, S. Fujikawa, I. Kamiya, Y. Ohshita, and M. Yamaguchi, J. Cryst. Growth 323, 13 (2011).

    Article  Google Scholar 

  43. M. Horbaschk, A. Benkert, C. Schumacher, K. Brunner, and R.B. Neder, Appl. Phys. Lett. 94, 211905 (2009).

    Article  Google Scholar 

  44. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.E. Weir, J. Vac. Sci. Technol. B10, 1807 (1992).

    Article  Google Scholar 

  45. E.A. Fitzgerald, A.Y. Kim, M.T. Currie, T.A. Langdo, G. Taraschi, and M.T. Bulsara, Mater. Sci. Eng. B67, 53 (1999).

    Article  Google Scholar 

  46. M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).

    Article  Google Scholar 

  47. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (Boca Raton, FL: CRC Press, 2007).

    Book  Google Scholar 

  48. S. Akram, H. Ehsani, and I.B. Bhat, J. Cryst. Growth 124, 628 (1992).

    Article  Google Scholar 

  49. S. Kalisetty, M. Gokhale, K. Bao, J.E. Ayers, and F.C. Jain, Appl. Phys. Lett. 68, 1693 (1996).

    Article  Google Scholar 

  50. P. Sheldon, K.M. Jones, M.M. Al-Jassim, and B.G. Yacobi, J.␣Appl. Phys. 63, 5609 (1988).

    Article  Google Scholar 

  51. J.E. Ayers, L.J. Schowalter, and S.K. Ghandhi, J. Cryst. Growth 125, 329 (1992).

    Article  Google Scholar 

  52. A. Ciani and P. Chung, J. Electron. Mater. 39, 1063 (2010).

    Article  Google Scholar 

  53. B. Bertoli, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 106, 073519 (2009).

    Article  Google Scholar 

  54. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, eds., Thermophysical Properties of Matter, Thermal Expansion, Nonmetallic Solids, Vol. 13 (New York: Plenum, 1977).

    Google Scholar 

  55. S.S. Ballard, S.E. Brown, and J.S. Browder, Appl. Opt. 17, 1152 (1978).

    Article  Google Scholar 

  56. C. Giannini, L. Tapfer, T. Peluso, N. Lovergine, and L. Vasanelli, J. Phys. D 28, A125 (1995).

    Article  Google Scholar 

  57. O. Madelung, eds., Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology: New Series, Vol. 17b (Berlin: Springer, 1982).

    Google Scholar 

  58. S.S. Ballard and J.S. Browder, Appl. Opt. 12, 1873 (1966).

    Article  Google Scholar 

  59. R.B. Roberts, G.K. White, and T.M. Sabine, Aust. J. Phys. 34, 701 (1981).

    Article  Google Scholar 

  60. J.W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  61. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Google Scholar 

  62. A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  Google Scholar 

  63. I. Yonenaga, K. Watanabe, S. Itoh, and S. Fujiwara, J. Mater. Sci. 41, 2601 (2006).

    Article  Google Scholar 

  64. T. Kujofsa, S. Cheruku, W. Yu, B. Outlaw, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 2764 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kujofsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kujofsa, T., Ayers, J. Comparison of Continuously- and Step-Graded ZnS y Se1−y /GaAs (001) Metamorphic Buffer Layers. J. Electron. Mater. 43, 3047–3055 (2014). https://doi.org/10.1007/s11664-014-3205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3205-3

Keywords

Navigation