Skip to main content
Log in

Improving the Power Conversion Efficiency of Organic Solar Cell by Blending with CdSe/ZnS Core–Shell Quantum Dots

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) with CdSe/ZnS core–shell quantum dots (QDs) as the active layer to produce organic solar cells (OSC). The size of the CdSe/ZnS core–shell QDs was determined to be about 4 nm using transmission electron microscopy. The OSC were characterized by measuring the absorption spectra, current–voltage characteristics, and external quantum efficiency (EQE) spectra. The samples doped with 0.5 wt.% CdSe/ZnS core–shell QDs exhibited higher power conversion efficiency (PCE) than samples doped with other concentrations of QDs. The PCE of the OSC increases from 2.10% to 2.38% due to an increase of the short circuit current density (J sc) from 6.00 mA/cm2 to 6.25 mA/cm2. The open circuit voltage (V oc) was kept constant when comparing OSC that were undoped and doped with 0.5 wt.% CdSe/ZnS core–shell QDs. These CdSe/ZnS core–shell QDs can increase optical absorption as well as provide extra exciton dissociation and additional electric pathways in hybrid OSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gunes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).

    Article  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  Google Scholar 

  3. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

    Article  Google Scholar 

  4. B.R. Saunders and M.L. Turner, Adv. Colloid Interface Sci. 138, 1 (2008).

    Article  Google Scholar 

  5. S.W. Lee, H.J. Lee, J.H. Choi, W.G. Koh, J.M. Myoung, J.H. Hur, J.J. Park, J.H. Cho, and U. Jeong, Nano Lett. 10, 347 (2010).

    Article  Google Scholar 

  6. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).

    Article  Google Scholar 

  7. T.F. Guo, T.C. Wen, G.L. Pakhomov, X.G. Chin, S.H. Liou, and P.H. Yeh, Thin Solid Films 516, 3138 (2008).

    Article  Google Scholar 

  8. F.C. Chen, J.L. Wu, C.L. Lee, W.C. Huang, H.M. Chen, and W.C. Chen, IEEE Electron. Dev. Lett. 30, 727 (2009).

    Article  Google Scholar 

  9. Y. Zhou, F.S. Riehle, Y. Yuan, H. Schleiermacher, M. Niggemann, G.A. Urban, and M. Krüger, Appl. Phys. Lett. 96, 013304 (2010).

    Article  Google Scholar 

  10. M.J. Greaney, S. Das, D.H. Webber, S.E. Bradforth, and R.L. Brutchey, ACSNANO 6, 4222 (2012).

    Google Scholar 

  11. J. Albero, P. Riente, J.N. Clifford, M.A. Pericàs, and E. Palomares, J. Phys. Chem. C 117, 13374 (2013).

    Article  Google Scholar 

  12. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  Google Scholar 

  13. A.M. Suhail, G.S. Muhammed, A.N. Naje, R.R. Mohammed, and H.I. Murad, Int. J. Sci. Adv. Technol. 2, 133 (2012).

    Google Scholar 

  14. J. Xue, B.P. Rand, and S.R. Forrest, Org. Photovolt. VII 6334, 63340K (2006).

    Article  Google Scholar 

  15. B. Paci, A. Generosi, V.R. Albertini, P. Perfetti, R. de Bettignies, and C. Sentein, Chem. Phys. Lett. 461, 77 (2008).

    Article  Google Scholar 

  16. C.W. Liang, W.F. Su, and L. Wang, Appl. Phys. Lett. 95, 133303 (2009).

    Article  Google Scholar 

  17. Q. Shen, J. Kobayashi, L.J. Diguna, and T. Toyoda, J. Appl. Phys. 103, 84304 (2008).

    Article  Google Scholar 

  18. Y.-C. Huang, Y.-C. Liao, S.-S. Li, M.-C. Wu, C.-W. Chen, and W.-F. Su, Solar Energy Mater Solar Cells 93, 888 (2009).

    Article  Google Scholar 

  19. S.K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C.S. Bhatia, P.K. Bhatnagar, and P.C. Mathur, Org. Electron. 13, 710 (2012).

    Article  Google Scholar 

  20. H.C. Liao, C.S. Tsao, T.H. Lin, M.H. Jao, C.M. Chuang, S.Y. Chang, Y.C. Huang, Y.T. Shao, C.Y. Chen, C.J. Su, U.S. Jeng, Y.F. Chen, and W.F. Su, ACS Nano 6, 1657 (2012).

    Article  Google Scholar 

  21. K. Topp, H. Borchert, F. Johnen, A.V. Tunc, M. Knipper, E.V. Hauff, J. Parisi, and K. Al-Shamery, J. Phys. Chem. A 114, 3981 (2010).

    Article  Google Scholar 

  22. M.S. Kim, B.G. Kim, and J. Kim, ACS Appl. Mater. Interfaces 1, 1264 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Science Council of Taiwan for financially supporting this research under Grant NSC 102-2221-E-168-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Chou Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SC., Hsiao, YJ. & Li, TS. Improving the Power Conversion Efficiency of Organic Solar Cell by Blending with CdSe/ZnS Core–Shell Quantum Dots. J. Electron. Mater. 43, 3077–3081 (2014). https://doi.org/10.1007/s11664-014-3187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3187-1

Keywords

Navigation