Skip to main content
Log in

High-Temperature High-Efficiency Solar Thermoelectric Generators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000°C to 100°C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. T. Caillat, S. Firdosy, B.C.-Y. Li, C.-K. Huang, B. Chen, J. Paik, J. Chase, T. Arakelian, L. Lara, and J.P. Fleurial, Nucl. Emerg. Technol. Space 3077, (2012)

  3. M. Telkes, J. Appl. Phys. 25, 13 (1954).

    Google Scholar 

  4. C. Kennedy, Report No. NREL/TP-520-32167

  5. A. Steinfeld and M. Schubnell, Sol. Energy 50, 19 (1993).

    Article  Google Scholar 

  6. N.P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, Opt. Express 17, 22800 (2009)

    Article  Google Scholar 

  7. M.K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V.S.K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23, 5410 (2011)

    Article  Google Scholar 

  8. C.H. Lin, R.L. Chern, and H.Y. Lin, Opt. Express 19, 415 (2011)

    Article  Google Scholar 

  9. H. Sai, H. Yugami, Y. Kanamori, and K. Hane, Sol. Energy Mater. Sol. Cells 79, 35 (2003)

    Article  Google Scholar 

  10. M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability (2011)

  11. D. Kraemer et al., Nat. Mater. 10, 532 (2011)

    Article  Google Scholar 

  12. C. Suter, P. Tomeš, A. Weidenkaff, and A. Steinfeld, Sol. Energy 85, 1511 (2011)

    Article  Google Scholar 

  13. J. Martinek and A.W. Weimer, Int. J. Heat Mass Transfer 58, 585 (2013)

    Article  Google Scholar 

  14. A. Steinfeld and E. Fletcher, Energy 13, 30 (1988)

    Google Scholar 

  15. R. Palumbo, M. Keunecke, S. Möller, and A. Steinfeld, Energy 29, 727 (2004). SolarPACES (2002)

  16. H. Naito, Y. Kohsaka, D. Cooke, and H. Arashi, Sol. Energy 58, 191 (1996)

    Article  Google Scholar 

  17. H.J. Goldsmid, Introduction to Thermoelectricity (Springer-Verlag: Berlin, 2010).

    Book  Google Scholar 

  18. R.R. Heikes and R.W. Ure, Thermoelectricity: Science and Engineering (New York: Interscience, 1961)

    Google Scholar 

  19. G.J. Snyder, Thermoelectric Power Generation: Efficiency and Compatibility, Chap. 9 (Boca Raton, FL: CRC Press, Taylor & Francis Group, 2006).

  20. G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003)

    Article  Google Scholar 

  21. J.R. Howell, A Catalog of Radiation Heat Transfer Configuration Factors (Austin: The University of Texas, 2010)

  22. L.L. Baranowski, G.J. Snyder, and E.S. Toberer, Energy Environ. Sci. 5, 9055 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauryn L. Baranowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranowski, L.L., Warren, E.L. & Toberer, E.S. High-Temperature High-Efficiency Solar Thermoelectric Generators. J. Electron. Mater. 43, 2348–2355 (2014). https://doi.org/10.1007/s11664-014-3063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3063-z

Keywords

Navigation