Skip to main content

Advertisement

Log in

Parametric Optimization of Exergy Efficiency in Solar Thermoelectric Generators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the optimization of the exergy efficiency of a solar thermoelectric generator (STEG) with respect to its hot-side temperature, length-weighted current density, thermoelement area ratio, length of the thermoelectric (TE) legs, and the thermal concentration ratio (CR). Lagrange multiplier technique was employed to perform the optimization. It was found that optimal hot-side temperatures exist at which maximum exergy efficiencies of STEGs are attained. In the absence of optical concentration, but with thermal CRs as large as 600–700, these exergy efficiencies were as much as 6–8% for a hot-side temperature range of 175–277 °C. The optimal hot-side temperatures were found to be independent of both the TE device geometry and the thermal CR, but varied with the TE device’s dimensionless figure of merit, as well as the properties of the STEG’s optical component and absorber. Moreover, optimal combination of these parameters gives the configuration that optimizes the efficiency. For instance, for a Bi2Te3-based TE material, with ZTm = 1, and under vacuum conditions, the optimal configuration is: a solar surface absorber area of 1300 mm2; cross-sectional area of 1 mm2 and height of 1 mm for both p and n legs; and an emittance of 0.05, giving a conversion efficiency of about 7%. So with the optimized configuration, complicated optical systems (which usually include tracking mechanisms) may be avoided, and the required amounts of TE material minimized. This ultimately results in substantial reductions in material, manufacturing and system costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Mgbemene, J. Duffy, H. Sun, and S.O. Onyegegbu, J. Sol. Energy Eng.132, 1 (2010)

    Article  Google Scholar 

  2. D.N. Kossyvakis, C.G. Vossou, C.G. Provatidis, and E.V. Hristoforou, Renew. Energy81, 150 (2015)

    Article  Google Scholar 

  3. P. Sundarraj, D. Maity, S.S. Roy, and R.A. Taylor, R. Soc. Chem. Adv.4, 46860 (2014)

    CAS  Google Scholar 

  4. R.A. Kishore, M. Sanghadasa, and S. Priya, Sci. Rep.7, 1 (2017)

    Article  CAS  Google Scholar 

  5. K. Yazawa and A. Shakouri, J. Appl. Phys.111, 1 (2012)

    Article  Google Scholar 

  6. A. Pereira, T. Caroff, G. Lorin, T. Baffie, K. Romanjek, S. Vesin, K. Kusiaku, H. Duchemin, V. Salvador, N. Miloud-Ali, and L. Aixala, J. Simon, Energy84, 485 (2015)

    Article  CAS  Google Scholar 

  7. G. Muthu, S. Shanmugam, and A.R. Veerappan, Appl. Mech. Mater.592–594, 2437 (2014)

    Article  Google Scholar 

  8. D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater.10, 532 (2011)

    Article  CAS  Google Scholar 

  9. D. Sun, L. Shen, Y. Yao, H. Chen, S. Jin, and H. He, Appl. Therm. Eng.119, 347 (2017)

    Article  Google Scholar 

  10. W.H. Chen, C.C. Wang, C.I. Hung, C.C. Yang, and R.C. Juang, Energy64, 287 (2014)

    Article  Google Scholar 

  11. G. Chen, J. Appl. Phys.109, 1 (2011)

    Google Scholar 

  12. Y. Zhao, S. Wang, M. Ge, Y. Li, and Y. Yang, Energy Convers. Manag.156, 140 (2018)

    Article  Google Scholar 

  13. S. Manikandan and S.C. Kaushik, Sol. Energy135, 569 (2016)

    Article  Google Scholar 

  14. S.C. Kaushik, S. Manikandan, and R. Hans, Int. J. Heat Mass Transf.86, 843 (2015)

    Article  Google Scholar 

  15. R. Petela, Engineering Thermodynamics of Thermal Radiation for Solar Power Utilization (McGraw-Hill Companies, Inc., New York, 2010)

    Google Scholar 

  16. O.P. Agnihotri and B.K. Gupta, Solar Selective Surfaces (Wiley, New York, 1982)

    Google Scholar 

  17. S.C. Kaushik and S. Manikandan, Energy Convers. Manag.103, 200 (2015)

    Article  Google Scholar 

  18. H.J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964)

    Book  Google Scholar 

  19. F.P. Incropera, D.P. Dewitt, T.L. Bergmann, and A. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, New Delhi, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevwe A. Ejenakevwe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejenakevwe, K.A., Mgbemene, C.A., Njoku, H.O. et al. Parametric Optimization of Exergy Efficiency in Solar Thermoelectric Generators. J. Electron. Mater. 49, 3063–3071 (2020). https://doi.org/10.1007/s11664-020-08021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08021-0

Keywords

Navigation