Skip to main content
Log in

Enhancement in Figure of Merit (ZT) by Annealing of BiTe Nanostructures Synthesized by Microwave-Assisted Flash Combustion

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Uniform polycrystalline bismuth telluride (BiTe) nanowires of diameter 100 nm to 150 nm and hexagonal nanoplates with thickness of 50 nm to 100 nm have been successfully synthesized by the microwave-assisted flash combustion technique. The formation of BiTe nanostructures depends on the type of fuel and the oxidant-to-fuel ratio, which in turn affect the reaction time and reaction temperature. Spark plasma sintering has been employed for compaction and sintering of both as-synthesized as well as annealed BiTe powders. Increasing the sintering temperature while using faster sintering cycles reduced the porosity, resulting in high densification while preserving the nanostructures. The dimensionless figure of merit (ZT) was evaluated from the Seebeck coefficient, electrical resistivity, and thermal conductivity values over the range from 300 K to 600 K. The effect of annealing on the enhancement of ZT is discussed. These evaluations suggest that the rarely studied BiTe is a potential candidate for thermoelectric applications at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995).

    Google Scholar 

  2. T.M. Triit, ed., Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part 1–3 (San Diego, CA: Academic, 2001), Vol. 69–71.

  3. H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum, 1964).

    Book  Google Scholar 

  4. R. Venkatsubramanian, E. Siivola, T. Colpiits, and B. O′Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, Science 320, 634 (2008).

    Article  Google Scholar 

  6. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111-1 (2005).

    Google Scholar 

  7. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  9. H. Shimazaki and T. Ozawa, Am. Min. 63, 1162 (1978).

    Google Scholar 

  10. M.M. Stasova, Zh. Strukt. Khim. 8, 655 (1967) [transl. J. Struct. Chem., 8, 584 (1967)].

  11. K. Yamana, K. Kihara, and T. Matsumoto, Acta Crystallogr. Sect. B 35, 147 (1979).

    Article  Google Scholar 

  12. Y. Kim, S. Cho, A. Di Venere, G.K.L. Wong, and J.B. Ketterson, Phys. Rev. B 63, 155306 (2001).

    Article  Google Scholar 

  13. M. Toprak, Y. Zhang, and M. Muhammed, Mater. Lett. 57, 3976 (2003).

    Article  Google Scholar 

  14. E.E. Foos, R.M. Stroud, and A.D. Berry, Nano Lett. 1, 693 (2001).

    Article  Google Scholar 

  15. M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, and A.M. Stacy, Adv. Mater. 14, 665 (2002).

    Article  Google Scholar 

  16. X.B. Zhao, T. Sun, T.J. Zhu, and J.P. Tu, J. Mater. Chem. 15, 1621 (2005).

    Article  Google Scholar 

  17. J.L. Mi, N. Lock, T. Sun, M. Christensen, M. Sondergaard, P. Hald, H.H. Hang, J. Ma, and B.B. Iversen, ACS Nano 4, 2523 (2010).

    Google Scholar 

  18. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, Tetrahedron. Lett. 27, 279 (1986).

    Google Scholar 

  19. R.J. Giguere, T.L. Bray, S.M. Duncan, and G. Majetich, Tetrahedron Lett. 27, 4945 (1986).

    Article  Google Scholar 

  20. P. Jood, et al., Nano Lett. 11, 4337 (2011).

    Article  Google Scholar 

  21. R.J. Mehta, Nat. Mater. 11, 233 (2012).

    Article  Google Scholar 

  22. R.J. Mehta, ACS Nano 4, 5055 (2010).

    Article  Google Scholar 

  23. R.J. Mehta, Nano Lett. 12, 4523 (2012).

    Article  Google Scholar 

  24. C.O. Kappe, Angew. Chem. Int. Ed. 43, 6250 (2004).

    Article  Google Scholar 

  25. S. Makhluf, R. Dror, Y. Nitzam, Y. Abramovich, R. Jelinek, and A. Gedanken, Adv. Funct. Mater. 15, 1708 (2005).

    Article  Google Scholar 

  26. M. Rekha, K. Laishram, R.K. Gupta, N. Malhan, and A.K. Satsangi, J. Mater. Sci. 44, 252 (2009).

    Article  Google Scholar 

  27. K. Tahmasebi and M.H. Paydar, J. Alloy. Compd. 509, 1192 (2011).

    Article  Google Scholar 

  28. H. Mohebbi, T. Ebadzadeh, and F.A. Hesari, Powder Technol. 188, 183 (2009).

    Article  Google Scholar 

  29. V. Vasanthi, A. Shanmugavani, C. Sanjeeviraja, and R.K. Selvan, J. Magn. Magn. Mater. 324, 2100 (2012).

    Article  Google Scholar 

  30. T.V. Anuradha and S. Ranganathan, Bull. Mater. Sci. 30, 263 (2007).

    Article  Google Scholar 

  31. Z. Chen, Y. Yan, J. Liu, Y. Yin, H. Wen, J. Zao, D. Liu, H. Tian, C. Zhang, and S. Li, J. Alloy. Compd. 473, 13 (2009).

    Article  Google Scholar 

  32. P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala, and A.K. Tripathi, J. Alloy. Compd. 509, 2160 (2011).

    Article  Google Scholar 

  33. V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A.L. Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008).

    Article  Google Scholar 

  34. S. Bhattacharya, et al., J. Mater. Chem. A 1, 11289 (2013).

  35. M. Imamuddin and A. Dupre, Phys. Stat. Sol. (a) 10, 415 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Senguttuvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, H., Sharma, L., Singh, S. et al. Enhancement in Figure of Merit (ZT) by Annealing of BiTe Nanostructures Synthesized by Microwave-Assisted Flash Combustion. J. Electron. Mater. 43, 1782–1789 (2014). https://doi.org/10.1007/s11664-013-2864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2864-9

Keywords

Navigation