Skip to main content
Log in

Low-Loss Magneto-Dielectric Materials: Approaches and Developments

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magneto-dielectric materials with matching permeability and permittivity have significant advantages for miniaturization and efficiency improvement of antennas. The main requirements for this kind of magneto-dielectric material include a high refractive index, matched permeability and permittivity, and low magnetic and dielectric losses at the application frequency. However, it is very difficult to meet these requirements simultaneously. This review presents the approaches and developments of magneto-dielectric materials of three types: spinel-based, hexagonal-based, and composite magneto-dielectric materials. It is proved that choosing the proper type of magneto-dielectric material is very important to obtain a higher refractive index and matched permeability and permittivity in the application frequency band. When the application frequency is low (less than 30 MHz), adopting composites of spinel ferrite and high-dielectric material is the best choice to improve the refractive index. When the application frequency is between 30 MHz and 100 MHz, it is better to choose spinel-based magneto-dielectric materials in consideration of both their relatively high refractive index and low losses. When the application frequency increases to 100 MHz to 500 MHz, hexagonal-based magneto-dielectric materials offer better performance. Finally, when the application frequency is beyond 500 MHz, to obtain matched permeability and permittivity, choosing composites of hexaferrite and an organic medium is recommended. Solutions for how to decrease magnetic and dielectric losses and expand the application frequency range are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mosallaei and K. Sarabandi, IEEE Trans. Antennas Propagat. 52, 1558 (2004).

    Article  Google Scholar 

  2. K. Buell, H. Mosallaei, and K. Sarabandi, IEEE Trans. Microw. Theory Technol. 54, 135 (2006).

    Article  Google Scholar 

  3. S. Bae, Y.-K. Hong, J.-J. Lee, W.-M. Seong, J. Kum, W.-K. Ahn, S.-H. Park, G.S. Abo, J. Jalli, and J.-H. Park, IEEE Trans. Magn. 46, 2361 (2010).

    Article  Google Scholar 

  4. J.K. Ji, W.K. Ahn, J.S. Kum, S.H. Park, G.H. Kim, and W.M. Seong, IEEE Magn. Lett. 1, 5000104 (2010).

    Article  Google Scholar 

  5. J. Lee, Y.-K. Hong, W. Lee, G.S. Abo, J. Park, N. Nicholas, W.M. Seong, S.-H. Park, and W.-K. Ahn, J. Appl. Phys. 111, 07A520 (2012).

    Google Scholar 

  6. F. Ferrero, A. Chevalier, J.M. Ribero, R. Staraj, J.L. Mattei, and P. Queffelec, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), (Rome, 2011), p. 2156.

  7. G.D. Prasanna, H.S. Jayanna, and R. Lamani Ashok, Chin. Phys. Lett. 28, 117701 (2011).

    Article  Google Scholar 

  8. C.-Y. Wei, X.-Q. Shen, and F.-Z. Song, Chin. Phys. B 21, 028101 (2012).

    Article  Google Scholar 

  9. J.-S. Wei and M.-F. Xiao, Chin. Phys. B 19, 057801 (2010).

    Article  Google Scholar 

  10. L.B. Kong, Z.W. Li, G.Q. Lin, and Y.B. Gan, Acta Mater. 55, 6561 (2007).

    Article  Google Scholar 

  11. L.B. Kong, Z.W. Li, G.Q. Lin, and Y.B. Gan, IEEE Trans. Magn. 44, 559 (2008).

    Article  Google Scholar 

  12. L.B. Kong, Z.W. Li, G.Q. Lin, and Y.B. Gan, J. Am. Ceram. Soc. 90, 3106 (2007).

    Article  Google Scholar 

  13. S. Bae, Y.-K. Hong, J.-J. Lee, J. Jalli, G.S. Abo, W.-M. Sung, G.-H. Kim, S.-H. Park, J.-S. Kum, and H.M. Kwon, IEEE Trans. Magn. 45, 4199 (2009).

    Article  Google Scholar 

  14. M.L.S. Teo, L.B. Kong, Z.W. Li, G.Q. Lin, and Y.B. Gan, J. Alloys Compd. 459, 557 (2008).

    Article  Google Scholar 

  15. K. Kawano, N. Sadurai, S. Kusumi, and H. Kishi, J. Magn. Magn. Mater. 297, 26 (2006).

    Article  Google Scholar 

  16. X. Tang, H. Zhang, H. Su, Z. Zhong, and Fe. Bai, IEEE Trans. Magn. 47, 4332 (2011).

    Article  Google Scholar 

  17. K.-S. Moon, C.P. Wong, and S.-H. Kim, J. Electron. Mater. 36, 1711 (2007).

    Article  Google Scholar 

  18. M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, and J. Kavanlooee, J. Electron. Mater. 41, 3082 (2012).

    Article  Google Scholar 

  19. M.L.S. Teo, L.B. Kong, Z.W. Li, G.Q. Lin, and Y.B. Gan, J. Alloys Compd. 459, 567 (2008).

    Article  Google Scholar 

  20. L.B. Kong, M.L.S. Teo, Z.W. Li, G.Q. Lin, and Y.B. Gan, J. Alloys Compd. 459, 576 (2008).

    Article  Google Scholar 

  21. H. Su, X. Tang, H. Zhang, L. Jia, and Z. Zhong, J. Magn. Magn. Mater. 321, 3183 (2009).

    Article  Google Scholar 

  22. A. Lucas, R. Lebourgeois, F. Mazaleyrat, and E. Laboure, J. Magn. Magn. Mater. 323, 735 (2011).

    Article  Google Scholar 

  23. H. Su, X. Tang, H. Zhang, Z. Zhong, and J. Shen, J. Appl. Phys. 109, 07A501 (2011).

    Google Scholar 

  24. P.J. van der Zaag, P.J. van der Valk, and M.Th. Rekveldt, Appl. Phys. Lett. 69, 2927 (1996).

    Article  Google Scholar 

  25. H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, and Z. Zhong, J. Appl. Phys. 113, 17B301 (2013).

    Google Scholar 

  26. A. Thakur, A. Chevalier, J.L. Mattei, and P. Queffelec, J. Appl. Phys. 108, 014301 (2010).

    Article  Google Scholar 

  27. S. Bae, Y.K. Hong, J.J. Lee, J. Jalli, G.S. Abo, A. Lyle, W.M. Seong, and J.S. Kum, J. Appl. Phys. 105, 07A515 (2009).

    Google Scholar 

  28. Q. Xia, H. Su, G. Shen, T. Pan, T. Zhang, H. Zhang, and X. Tang, J. Appl. Phys. 111, 063921 (2012).

    Article  Google Scholar 

  29. Q. Xia, H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, and X. Tang, J. Appl. Phys. 112, 043915 (2012).

    Article  Google Scholar 

  30. R.V. Petrov, A.S. Tatarenko, G. Srinivasan, and J.V. Mantese, Microw. Opt. Technol. Lett. 50, 3154 (2008).

    Article  Google Scholar 

  31. H. Su, X. Tang, H. Zhang, Z. Zhong, and Y. Jing, Chinese invention patent, ZL200910058207.3 (2009).

  32. H. Su, H. Zhang, X. Tang, Y. Jing, and Z. Zhong, J. Magn. Magn. Mater. 321, 2763 (2009).

    Article  Google Scholar 

  33. B.-W. Li, Y. Shen, Z.-X. Yue, and C.-W. Nan, J. Appl. Phys. 99, 123909 (2006).

    Article  Google Scholar 

  34. T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003).

    Article  Google Scholar 

  35. Y. Shen, Z. Yue, M. Li, and C.-W. Nan, Adv. Funct. Mater. 15, 1100 (2005).

    Article  Google Scholar 

  36. R. Lebourgeois, S. Berenguer, C. Ramiarinjaona, and T. Waeckerle, J. Magn. Magn. Mater. 254–255, 191 (2003).

    Article  Google Scholar 

  37. D. Souriou, J.-L. Mattei, A. Chevalier, and P. Queffelec, J. Appl. Phys. 107, 09A518 (2010).

    Article  Google Scholar 

  38. T. Nakamura, T. Tsutaoka, and K. Hatakeyama, J. Magn. Magn. Mater. 138, 319 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, H., Tang, X., Zhang, H. et al. Low-Loss Magneto-Dielectric Materials: Approaches and Developments. J. Electron. Mater. 43, 299–307 (2014). https://doi.org/10.1007/s11664-013-2831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2831-5

Keywords

Navigation