Skip to main content
Log in

Yellow–Orange Electroluminescence of Novel Tin Complexes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Novel tin complexes were synthesized for use as fluorescent materials in organic light-emitting diodes (OLEDs). The structures of these complexes were characterized by ultraviolet–visible, Fourier-transform infrared, and nuclear magnetic resonance spectroscopy methods and elemental analyses. The energy levels of the tin complexes were determined using cyclic voltammetry measurements. Devices were fabricated with an indium tin oxide (ITO)/PEDOT:PSS (90 nm)/PVK:PBD:tin complexes (75 nm)/Al (180 nm) structure; the resultant devices had peak emissions ranging from 537 nm to 580 nm. The tin complexes accounted for 8 wt.% of the blend in the PVK:PBD (100:40), which was used as a host. The electroluminescent spectra of the tin complexes were red-shifted as compared with the PVK:PBD blend. We believe that the electroluminescence performance of OLED devices based on tin complexes relies on overlaps between the absorption of the tin compounds and the emission of PVK:PBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.W.D. andrade and S.R. Forrest, Adv. Mater. 16, 1585 (2004).

    Article  Google Scholar 

  2. C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  CAS  Google Scholar 

  3. J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, Jpn. J. Appl. Phys. 32, 917 (1993).

    Article  Google Scholar 

  4. W.Y. Wong and C. Lam Ho, Coord. Chem. Rev. 253, 1758 (2009).

    Article  Google Scholar 

  5. A. Chaieb, L. Vignau, R. Brown, G. Wantz, N. Huby, and J. Francis, Opt. Mater. 31, 68 (2008).

    Article  CAS  Google Scholar 

  6. M. Anicete-Santos, M.S. Silvab, E. Orhanc, M.S. Goes, M.A. Zaghete, C.O. Paiva-Santos, P.S. Pizani, M. Cilense, J.A. Varelag, and E. Longo, J. Lumin. 127, 689 (2007).

    Article  CAS  Google Scholar 

  7. J. Liang, Z. Deng, X. Jiang, F. Li, and Y. Li, Inorg. Chem. 41, 3602 (2002).

    Article  CAS  Google Scholar 

  8. M.K. Itokazu, A.S. Polo, and N.Y.M. Iha, Int. J. Photoenergy 3, 143 (2001).

    Article  CAS  Google Scholar 

  9. L. Lai and J. Su, Mater. Chem. Phys. 62, 148 (2000).

    Article  CAS  Google Scholar 

  10. L. Huang, K. Tang, Q. Yang, G. Shen, and S. Jia, Mater. Res. Bull. 39, 1083 (2004).

    Article  CAS  Google Scholar 

  11. Y. Du, Q. Pan, J. Li, J. Yu, and R. Xu, Inorg. Chem. 46, 5847 (2007).

    Article  CAS  Google Scholar 

  12. J.M.D. Souza, G.F. De, W.M. Azevedo, S. Alves, and R.F. De Farias, Opt. Mater. 27, 1187 (2005).

    Article  Google Scholar 

  13. B. Yan and Q.Y. Xie, Monat. Chem. 135, 757 (2004).

    CAS  Google Scholar 

  14. B.L. An, M.L. Gong, M.X. Li, and J.M. Zhang, J. Mol. Struct. 687, 1 (2004).

    Article  CAS  Google Scholar 

  15. Y.F. Pan, A. Zheng, F.Z. Hu, and H.N. Xiao, J. Appl. Polym. Sci. 100, 1506 (2006).

    Article  CAS  Google Scholar 

  16. R.J. Aarons, J.K. Notta, M.M. Meloni, J. Feng, R. Vidyasagar, J. Narvainen, S. llan, N. Spencer, R.A. Kauppinen, J.S. Snaith, and S.A. Faulkner, Chem. Commun. 8, 909 (2006).

    Article  Google Scholar 

  17. P. Lenaerts, K. Driesen, R.V. Deun, and K. Binnemans, Chem. Mater. 17, 2154 (2005).

    Google Scholar 

  18. M. Schaferling and O.S. Wolfbeis, Eur. J. Inorg. Chem. 13, 4342 (2007).

    Google Scholar 

  19. C.D.B. Vandevyver, A.S. Chauvin, S. Comby, C.D.B. Vandevyver, A.S. Chauvin, S. Comby, and J.C.G. Bunzli, Chem. Commun. 17, 1716 (2007).

    Article  Google Scholar 

  20. H. Ren, D. Sun, Z. Cui, M. Yang, and G. Hong, J. Rare Earths 28, 47 (2010).

    Article  Google Scholar 

  21. I.M. Chan, T.Y. Hsu, and F.C. Hong, Appl. Phys. Lett. 81, 1899 (2002).

    Article  CAS  Google Scholar 

  22. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Nature 395, 151 (1998).

    Article  CAS  Google Scholar 

  23. Y. Yamada, T. Sano, K. Shibata, and K. Kuroki, Jpn. J. Appl. Phys. 34, L824 (1995).

    Article  Google Scholar 

  24. W.F. Zeng, Y.S. Chen, M.Y. Chiang, S.S. Chern, and C.P. Cheng, Polyhedron 21, 1081 (2002).

    Article  CAS  Google Scholar 

  25. Y. Qin, C. Pagba, P. Piotrowiak, and F. Jakle, J. Am. Chem. Soc. 126, 7015 (2004).

    Article  CAS  Google Scholar 

  26. M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, Chem. Mater. 16, 4627 (2004).

    Article  CAS  Google Scholar 

  27. P.E. Burrows, L.S. Sapochak, D.M. McCarty, S.R. Forrest, and M.E. Thompson, Appl. Phys. Lett. 64, 2718 (1994).

    Article  CAS  Google Scholar 

  28. P.E. Burrows, Z. Shen, V. Bulovic, D.M. McCarty, S.R. Forrest, and J.A. Cronin, J. Appl. Phys. 79, 7991 (1996).

    Article  CAS  Google Scholar 

  29. L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K. Riccio, D. Fogarty, H. Kohlmann, K.F. Ferris, and P.E. Burrows, J. Am. Chem. Soc. 124, 6119 (2002).

    Article  CAS  Google Scholar 

  30. N.M. Shavaleev, H. Adams, J. Best, R. Edge, S. Navaratnam, and J.A. Weinstein, Inorg. Chem. 45, 9410 (2006).

    Article  CAS  Google Scholar 

  31. H. Nikol, A. Becht, and A. Voglor, Inorg. Chem. 31, 3277 (1992).

    Article  CAS  Google Scholar 

  32. K. Singh, A. Kumar, R. Srivastava, P.S. Kadyan, and M.N. Kamalasanan, Opt. Mater. 34, 221 (2011).

    Article  CAS  Google Scholar 

  33. R.S. Ashraf, M. Shahid, E. Klemm, M. Al-Ibrahim, and S. Sensfuss, Macromol. Macromol. Rapid Commun. 27, 1454 (2006).

    Article  CAS  Google Scholar 

  34. B. Ma, B.J. Kim, L. Deng, D. Poulsen, M.E. Thompson, and J. Frechet, Macromolecules 40, 8156 (2007).

    Article  CAS  Google Scholar 

  35. J. Yang and K. Gordon, Chem. Phys. Lett. 385, 481 (2004).

    Article  CAS  Google Scholar 

  36. S. Chang, C. Fan, C. Lai, Y. Chao, and S. Hu, Surf. Coat. Tech. 200, 3289 (2006).

    Article  CAS  Google Scholar 

  37. W.T. Higginsa, A. Monkman, H. Nothofer, and U. Scherf, J. Appl. Phys. 91, 99 (2002).

    Article  Google Scholar 

  38. N. Agarwal, Dyes Pigments 83, 328 (2009).

    Article  CAS  Google Scholar 

  39. C.C. Lee, M.Y. Chang, P.T. Huang, Y.C. Chen, Y. Chang, and S.W. Liu, J. Appl. Phys. 101, 114501 (2007).

    Article  Google Scholar 

  40. C.C. Yap, M. Yahaya, and M.M. Salleh, Solid State Sci. Technol. 16, 63 (2008).

    Google Scholar 

  41. M.D. Galanin, Luminescence of Molecules and Crystals (Cambridge: Cambridge International Science, 1996), pp. 69–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezeddin Mohajerani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janghouri, M., Mohajerani, E., Amini, M.M. et al. Yellow–Orange Electroluminescence of Novel Tin Complexes. J. Electron. Mater. 42, 2915–2925 (2013). https://doi.org/10.1007/s11664-013-2694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2694-9

Keywords

Navigation