Skip to main content
Log in

Defect Characterization in Ge/(001)Si Epitaxial Films Grown by Reduced-Pressure Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We studied the microstructural characteristics and electrical properties of epitaxial Ge films grown on Si(001) substrates by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The films were grown using a two-step technique by reduced-pressure chemical vapor deposition, where the first step promotes two-dimensional growth at a lower substrate temperature. We observed a decrease in defect density with increasing film thickness. Ge films with thickness of 3.5 μm exhibited threading dislocation densities of 5 × 106 cm−2, which yielded devices with dark current density of 5 mA cm−2 (1 V reverse bias). We also noted the presence of stacking faults in the form of lines in the films and establish that this is an important defect for Ge films grown by this deposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Michel, J. Liu, and L.C. Kimerling, Nat. Photonics 4, 527 (2010).

    Article  CAS  Google Scholar 

  2. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).

    Article  CAS  Google Scholar 

  3. H.-C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada, and L.C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    Article  CAS  Google Scholar 

  4. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L.C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).

    Article  CAS  Google Scholar 

  5. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, IEEE Photonics Technol. Lett. 19, 1813 (2007).

    Article  CAS  Google Scholar 

  6. T.A. Langdo, C.W. Leitz, M.T. Currie, E.A. Fitzgerald, A. Lochtefeld, and D.A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).

    Article  CAS  Google Scholar 

  7. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L.C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    Article  Google Scholar 

  8. B.D. Cullity, Elements of X-Ray Diffraction (Menlo Park, CA: Addison-Wesley, 1978), p. 284.

    Google Scholar 

  9. Y.B. Bolkhovityanov and L.V. Sokolov, Semicond. Sci. Technol. 27, 1 (2012).

    Article  Google Scholar 

  10. M.A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals (New York: Plenum, 1969).

    Google Scholar 

  11. D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

    Article  CAS  Google Scholar 

  12. S. Oktyabrsky and J. Narayan, Philos. Mag. A 72, 305 (1995).

    Article  CAS  Google Scholar 

  13. Y. Okada and Y. Tokamaru, J. Appl. Phys. 56, 314 (1984).

    Article  CAS  Google Scholar 

  14. H.P. Singh, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 24, 469 (1968).

  15. I.C. Noyan and J.B. Cohen, Residual Stress Measurement by Diffraction and Measurement (New York: Springer-Verlag, 1987).

    Book  Google Scholar 

  16. J. Bharathan, J. Narayan, G. Rozgonyi, and G. Bulman, J. Electron. Mater. 42, 40 (2013).

    Article  CAS  Google Scholar 

  17. G.E. Beltz, M. Chang, M.A. Eardley, W. Pompe, A.E. Romanov, and J.S. Speck, Mater. Sci. Eng. A 234-236, 794 (1997).

    Article  Google Scholar 

  18. J. Narayan and A.S. Nandedkar, Philos. Mag. B 63, 1181 (1991).

    Article  CAS  Google Scholar 

  19. J. Narayan and A.S. Nandedkar, Mater. Sci. Eng. A 113, 51 (1989).

    Article  Google Scholar 

  20. S. Oktyabrsky, H. Wu, R.D. Vispute, and J. Narayan, Philos. Mag. A 71, 537 (1995).

    Article  CAS  Google Scholar 

  21. E.P. Kvam, D.M. Maher, and C.J. Humpreys, J. Mater. Res. 5, 1900 (1990).

    Article  CAS  Google Scholar 

  22. J. Narayan, J. Appl. Phys. 53, 8607 (1982).

    Article  CAS  Google Scholar 

  23. S. Mendelson, J. Appl. Phys. 35, 1570 (1964).

    Article  Google Scholar 

  24. R. Finch, H. Queisser, G. Thomas, and J. Washburn, J. Appl. Phys. 34, 406 (1963).

    Article  CAS  Google Scholar 

  25. G.H. Schwuttke, J. Appl. Phys. 33, 1538 (1962).

    Article  CAS  Google Scholar 

  26. G. Booker and R. Stickler, J. Appl. Phys. 33, 3281 (1962).

    Article  CAS  Google Scholar 

  27. V.J. Silvestri, K. Nummy, P. Ronsheim, R. Bendernagel, D. Kerr, V.T. Phan, J.O. Borland, and J. Hann, J. Electrochem. Soc. 137, 2323 (1990).

    Article  CAS  Google Scholar 

  28. M.R. Goulding, Mater. Sci. Eng. B 17, 47 (1993).

    Article  Google Scholar 

  29. J. Yang, G.W. Neudeck, and J.P. Denton, Appl. Phys. Lett. 77, 4034 (2000).

    Article  CAS  Google Scholar 

  30. D. Vincent, Fundamentals of Infrared Detector Operation and Testing (New York: Wiley, 1990), p. 37.

    Google Scholar 

  31. C.G. Van de Walle and R.M. Martin, Phys. Rev. B 35, 8154 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh Bharathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathan, J., Narayan, J., Rozgonyi, G. et al. Defect Characterization in Ge/(001)Si Epitaxial Films Grown by Reduced-Pressure Chemical Vapor Deposition. J. Electron. Mater. 42, 2888–2896 (2013). https://doi.org/10.1007/s11664-013-2686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2686-9

Keywords

Navigation