Skip to main content
Log in

Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Simultaneous occurrence of large ferroelectricity and strong ferromagnetism has been observed in strontium hexaferrite (SrFe12O19) ceramics. Strontium hexaferrite powders with hexagonal crystal structures have been successfully synthesized through the co-precipitation precursor method using strontium nitrate and ferric nitrate as starting materials. The powders were pressed into pellets and then sintered into ceramics at a temperature range of at 1000°C to 1100°C for 1 h. The structure and morphology of the ceramics were determined using x-ray diffraction and field-emission scanning electron microscopy techniques. Clear ferroelectric hysteresis loops demonstrated large spontaneous polarization in the SrFe12O19 ceramics at room temperature. The maximum remnant polarization of the SrFe12O19 ceramic was estimated to be approximately 15 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the displacement of Fe3+ off the center of the octahedron are proposed to be the origin of electric polarization in SrFe12O19. In our experimental observations, the SrFe12O19 ceramic also revealed strong ferromagnetism at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).

    Article  CAS  Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, and R.V. Pisarev, Nature 419, 818 (2002).

    Article  CAS  Google Scholar 

  3. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  CAS  Google Scholar 

  4. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.W. Cheong, Nature 429, 392 (2004).

    Article  CAS  Google Scholar 

  5. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature 436, 1136 (2005).

    Article  CAS  Google Scholar 

  6. H.J. Xiang and M.H. Whangbo, Phys. Rev. Lett. 98, 246403 (2007).

    Article  CAS  Google Scholar 

  7. S. Ryu, J.Y. Kim, Y.H. Shin, B.G. Park, J.Y. Son, and H.M. Jang, Chem. Mater. 21, 5050 (2009).

    Article  CAS  Google Scholar 

  8. M. Wang and G.L. Tan, Mater. Res. Bull. 46, 438 (2011).

    Article  CAS  Google Scholar 

  9. G.L. Tan and M. Wang, J. Electroceram. 26, 170 (2011).

    Article  CAS  Google Scholar 

  10. J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A. Krug von nidda, V. Tsurkan, and A. Loidl, Nature 434, 364 (2005).

    Article  CAS  Google Scholar 

  11. A. Filippetti and N.A. Hill, J. Magn. Magn. Mater. 236, 176 (2001).

    Article  CAS  Google Scholar 

  12. J.R. Sahu, A. Ghosh, A. Sundaresan, and C.N.R. Rao, Mater. Res. Bull. 44, 2123 (2009).

    Article  CAS  Google Scholar 

  13. T. Kimura, G. Lawes, and A.P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).

    Article  CAS  Google Scholar 

  14. N. Yang, H. Yang, J. Jia, and X. Pang, J. Alloy Compd. 438, 263 (2007).

    Article  CAS  Google Scholar 

  15. G.K. Thompson and B.J. Evans, J. Appl. Phys. 73, 6295 (1993).

    Article  CAS  Google Scholar 

  16. S. Diaz-Castañón, J.L. Sánchez, E. Estevez-Rams, F. Leccabue, and B.E. Watts, J. Magn. Magn. Mater 185, 194 (1998).

    Article  Google Scholar 

  17. R.S. Weis and T.K. Gaylord, Appl. Phys. A Mater. 37, 191 (1985).

    Article  Google Scholar 

  18. P. Novak, K. Knizek, M. Kupferling, R. Groessinger, and M.W. Pieper, Eur. Phys. J. B 43, 509 (2005).

    Article  CAS  Google Scholar 

  19. C.M. Fang, F. Cools, R. Metselaar, G. de With, and R.A. de Groot, J. Phys. Condens. Matter 15, 6229 (2003).

    Article  CAS  Google Scholar 

  20. A. Drmota, M. Drofenik, and A. Znidarsic, Ceram. Int. 38, 973 (2012).

    Article  CAS  Google Scholar 

  21. Y.E. Roginskaya, Y.Y. Tomashpol’skii, Y.N. Venevtsev, V.M. Petrov, and G.S. Zhdanov, Sov. Phys. JETP-USSR 23, 47 (1966).

    Google Scholar 

  22. S.E. Jacabo, L. Civale, and M.A. Blesa, J. Magn. Magn. Mater. 260, 37 (2003).

    Article  Google Scholar 

  23. J. Ding, W.F. Miao, P.G. McCormick, and R. Street, J. Alloys Compd. 281, 32 (1998).

    Article  CAS  Google Scholar 

  24. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  CAS  Google Scholar 

  25. M. Hojamberdiev, Y. Xu, F. Wang, W. Liu, and J. Wang, Inorg. Mater. 45, 1183 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolong Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, G., Chen, X. Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics. J. Electron. Mater. 42, 906–911 (2013). https://doi.org/10.1007/s11664-012-2426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2426-6

Keywords

Navigation