Skip to main content
Log in

Effects of Disordered Atoms and Nanopores on Mechanical Properties of β-Zn4Sb3: a Molecular Dynamics Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Effects of disordered Zn atoms and nanopores on mechanical properties of β-Zn4Sb3 are studied by using the molecular dynamics (MD) method. Due to the influence of disordered Zn atoms in β-Zn4Sb3, the elastic modulus decreases from 90.85 GPa to 68.17 GPa, a decrease of 24.96%. The ultimate tensile stress decreases from 18.25 GPa to 9.96 GPa, a decrease of 45.42%. The fracture strain decreases from 32.7% to 20.8%, a decrease of 36.39%. Due to the influence of nanopores, the elastic modulus decreases with growing porosity, and the relationship between the elastic modulus and porosity leads to a scaling law. It seems that the porous radius and porous distribution are also important factors influencing the ultimate tensile stress and fracture strain, in addition to the porosity. However, our simulation results demonstrate that disordered Zn atoms and nanopores reduce the structural stability, dramatically decreasing the mechanical properties of β-Zn4Sb3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. DiSalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  2. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  CAS  Google Scholar 

  3. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, Chem. Eur. J. 10, 3861 (2004).

    Article  CAS  Google Scholar 

  4. S. Bhattacharya, R.P. Hermann, V. Keppens, T.M. Tritt, and G.J. Snyder, Phys. Rev. B 74, 134108 (2006).

    Article  Google Scholar 

  5. P. Rauwel, O.M. Lovvik, E. Rauwel, and J. Tafto, Acta Mater. 59, 5266 (2011).

    Article  CAS  Google Scholar 

  6. B. Qiu, L. Sun, and X. Ruan, Phys. Rev. B 83, 035312 (2011).

    Article  Google Scholar 

  7. B. Qiu and X. Ruan, Appl. Phys. Lett. 97, 183107 (2010).

    Article  Google Scholar 

  8. B.L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).

    Article  Google Scholar 

  9. X. Yang, P. Zhai, L. Liu, and Q. Zhang, J. Appl. Phys. 109, 123517 (2011).

    Article  Google Scholar 

  10. R. Yu, P.C. Zhai, G.D. Li, and L.S. Liu, J. Electron. Mater. 41, 1465 (2012).

    Article  CAS  Google Scholar 

  11. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  12. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  13. H.W. Mayer, I. Mikhail, and K. Schubert, J. Less Common Met. 59, 43 (1978).

    Article  CAS  Google Scholar 

  14. G.D. Li, Y. Li, X.Q. Yang, Y. Tong, A. Zhou, L.S. Liu, and P.C. Zhai, J. Electron. Mater. 40, 1158 (2010).

    Article  Google Scholar 

  15. G.D. Li, Y. Li, L.S. Liu, Q.J. Zhang, and P.C. Zhai, Mater. Res. Bull. doi:10.1016/j.materresbull.2012.06.059.

  16. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  17. W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson, J. Chem. Phys. 76, 637 (1982).

    Article  CAS  Google Scholar 

  18. D.M. Heyes, Phys. Rev. B 49, 755 (1994).

    Article  CAS  Google Scholar 

  19. J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  20. G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, J. Phys. D 30, 2911 (1997).

    Article  CAS  Google Scholar 

  21. J.-H. Lee, J.C. Grossman, J.C. Grossman, J. Reed, and G. Galli, Appl. Phys. Lett. 91, 223110 (2007).

    Article  Google Scholar 

  22. P. Zhai, G. Li, P. Wen, Y. Li, Q. Zhang, and L. Liu, J. Solid State Chem. 193, 76 (2012).

    Article  CAS  Google Scholar 

  23. G. Li, Y. Li, Q. Zhang, L. Liu, and P. Zhai, J. Electron. Mater. 41, 1470 (2012).

    Article  CAS  Google Scholar 

  24. Y. Tong, F. Yi, L. Liu, P. Zhai, and Q. Zhang, Comput. Mater. Sci. 48, 343 (2010).

    Article  CAS  Google Scholar 

  25. J. Luo and R. Stevens, Ceram. Int. 25, 281 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Li, Y., Zhang, Q. et al. Effects of Disordered Atoms and Nanopores on Mechanical Properties of β-Zn4Sb3: a Molecular Dynamics Study. J. Electron. Mater. 42, 1514–1521 (2013). https://doi.org/10.1007/s11664-012-2305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2305-1

Keywords

Navigation