Skip to main content

Advertisement

Log in

Structural, Mechanical, and Thermal Properties of β-Si3N4 under High Pressure

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Intensive calculations have been carried out to study the structural, mechanical, and thermal properties of β-Si3N4 with hexagonal P63/m structure. The calculated lattice constants a and c are in agreement with the available experimental data and similar theoretical calculations. Through a series of researches, the mechanical parameters (the elastic constants, bulk modulus, shear modulus, and Young’s modulus) and Debye temperature, the wave velocities are systematically investigated. Additionally, the mechanical anisotropy has been characterized by calculating Young’s modulus and described by the three-dimensional (3D) surface constructions and its projections. By using the born stability criteria and phonon frequency, it is concluded that the β-Si3N4 is stable mechanically and dynamically up to 35 GPa. Finally, the thermal properties have been calculated by employing the quasi-harmonic Debye model at different temperatures (0–800 K) and pressures (0–35 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Kato, Z. Inoue, K. Kijima, I. Kawada, H. Tanaka, T. Yamane, J. Am. Ceram. Soc. 58, 90 (1975)

    Article  Google Scholar 

  2. D. du Boulay, N. Ishizawa, T. Atake, V. Streltsov, K. Furuya, F. Munakata, Acta Cryst. B 60, 388 (2004)

    Article  Google Scholar 

  3. M. Schwarz, G. Miehe, A. Zerr, E. Kroke, B.T. Poe, H. Fuess, R. Riedl, Adv. Mater. 12, 883 (2000)

    Article  Google Scholar 

  4. J.W. Swegle, J. Appl. Phys. 68, 1563 (1990)

    Article  ADS  Google Scholar 

  5. R. Grün, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 800 (1979)

  6. L. Cui, M. Hu, Q.Q. Wang, B. Xu, D.L. Yu, Z.Y. Liu, J.L. He, J. Solid State Chem. 228, 20 (2015)

    Article  ADS  Google Scholar 

  7. S.P. Dodd, M. Cankuptaran, G.A. Saunders, B. James, J. Mater. Sci. 36, 2557 (2001)

    Article  ADS  Google Scholar 

  8. R. Belkada, T. Shibayanagi, M. Naka, J. Am. Ceram. Soc. 83, 2449 (2000)

    Article  Google Scholar 

  9. R. Vogelgesang, M. Grimsditch, J.S. Wallace, Appl. Phys. Lett. 76, 982 (2000)

    Article  ADS  Google Scholar 

  10. R. Flammini, A. Bellucci, F. Wiame, R. Belkhou, M. Carbone, D.M. Trucchi, S. Colonna, F. Ronci, M. Hajlaoui, M.G. Silly, F. Sirotti, Appl. Surf. Sci. 355, 93 (2015)

    Article  ADS  Google Scholar 

  11. W.Y. Ching, L.Z. Ouyang, J.D. Gale, Phys. Rev. B 61, 8696 (2000)

  12. A. Kuwabara, K. Matsunaga, I. Tanaka, Phys. Rev. B 78, 064104 (2008)

    Article  ADS  Google Scholar 

  13. X.F. Lu, X. Guo, J.B. Yin, Y.P. Wei, X.L. Nan, Q.Z. Dong, Y.X. Ma, P.Q. La, Mat. Sci. Eng. A 648, 72 (2015)

    Article  Google Scholar 

  14. Y. Jiang, S.H. Garofalini, Scripta Mater. 113, 97 (2016)

    Article  Google Scholar 

  15. Y.M. Li, M.B. Kruger, J.H. Nguyen, W.A. Caldwell, R. Jeanloz, Solid State Commun. 103, 107 (1997)

    Article  ADS  Google Scholar 

  16. M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  18. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  19. D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    Article  ADS  Google Scholar 

  20. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  21. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, J. Appl. Phys. 112, 043703 (2012)

    Article  ADS  Google Scholar 

  22. E. Francisco, J.M. Recio, M.A. Blanco, A. Martín Pendás, J. Phys. Chem. 102, 1595 (1998)

    Article  Google Scholar 

  23. E. Francisco, G. Sanjurjo, M.A. Blanco, Phys. Rev. B 63, 094107 (2001)

    Article  ADS  Google Scholar 

  24. G. Rangelov, J. Stober, B. Eisenhut, T. Fauster, Phys. Rev. B 44, 1954 (1991)

    Article  ADS  Google Scholar 

  25. A. Reyes-Serrato, D.H. Galvan, I.L. Garzon, Phys. Rev. B 52, 6293 (1995)

    Article  ADS  Google Scholar 

  26. C. Sevik, C. Bulutay, J. Mater. Sci. 42, 6555 (2007)

    Article  ADS  Google Scholar 

  27. O. Borgen, H.M. Seip, Acta Chem. Scand. 15, 1789 (1961)

    Article  Google Scholar 

  28. M. Born, Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.A. Wendel, W.A. Goddard III, J. Chem. Phys. 97, 5048 (1992)

    Article  ADS  Google Scholar 

  30. W.Y. Ching, Y.N. Xu, J.D. Gale, M. Rühle, J. Am. Ceram. Soc. 81, 3189 (1998)

    Article  Google Scholar 

  31. J.C. Hay, E.Y. Sun, G.M. Pharr, P.F. Becher, K.B. Alexander, J. Am. Ceram. Soc. 81, 2661 (1998)

    Article  Google Scholar 

  32. A.P. Mirgorodsky, M.I. Baraton, P. Quintard, Phys. Rev. B 48, 13326 (1993)

    Article  ADS  Google Scholar 

  33. W. Voigt, Lehrbuchde Kristallphysik (Terubner, Leipzig, 1928)

    Google Scholar 

  34. A.Z. Reuss, Angew. Math. Mech. 9, 49 (1929)

    Article  Google Scholar 

  35. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  36. K.B. Panda, K.S. Ravi Chandran, Comput. Mater. Sci. 35, 134 (2006)

    Article  Google Scholar 

  37. J.F. Nye, Physical properties of crystals (Oxford University Press, Oxford, 1985)

    MATH  Google Scholar 

  38. C.K. Loong, J. Eur. Ceram. Soc. 19, 2241 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of China (Grant nos. 51402251 and 51502259). This work was sponsored by the Natural Science Foundation of Jiangsu Province of China (BK20130428). This work was supported by the joint research fund between Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (GX2015305). Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 14KJD430003). This work was supported by the science and technology project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2015-K4-007). This work was supported by Top-notch Academic Programs Project of JiangSu Higher Education Institutions, TAPP (Grant nos. PPZY2015A025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H.J., Zhu, H.J., Lao, C.W. et al. Structural, Mechanical, and Thermal Properties of β-Si3N4 under High Pressure. Braz J Phys 46, 393–398 (2016). https://doi.org/10.1007/s13538-016-0421-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0421-8

Keywords

Navigation