Skip to main content
Log in

AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver (Ag)-TiO2 nanoparticles synthesized by a low-temperature hydrothermal method in the anatase phase have been investigated by x-ray diffraction. Transmission electron microscopy has been used for morphological studies. Surface areas were studied by the Brunauer–Emmett–Teller method. Alternating-current (AC) conductivity and dielectric properties were studied for various dopant levels of 0.25 wt.%, 0.5 wt.%, and 1.0 wt.% at 300 K in the frequency range from 42 Hz to 5 MHz. AC conductivity and dielectric properties of TiO2 nanoparticles were greatly affected by loading with Ag. At high frequencies, the materials showed high AC conductivity and low dielectric constant. Diffuse reflectance studies were carried out for various dopant levels at 300 K by ultraviolet–visible (UV–Vis) spectroscopy. Considerable absorption of visible light by 0.5 wt.% and 1.0 wt.% Ag-TiO2 nanoparticles was observed due to the decrease of the energy band gap on Ag loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Kim, T.H. Han, J. Kim, H. Gwon, H.S. Moon, S.W. Kang, S.O. Kim, and K. Kang, ACS Nano 3, 1085 (2009).

    Article  CAS  Google Scholar 

  2. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, and M. Gratzel, ACS Nano 2, 1113 (2008).

    Article  CAS  Google Scholar 

  3. K. Shankar, J. Bandara, M. Paulose, H. Wletash, O.K. Varghese, G.K. More, M. Thelakkat, and C.A. Grimes, Nanoletters 8, 1654 (2008).

    Article  CAS  Google Scholar 

  4. J. Thomas, K. Praveen Kumar, and S. Mathew, Sci. Adv. Mater. 2, 481 (2010).

    Article  CAS  Google Scholar 

  5. C. Lee, P. Ghosez, and X. Gonze, Phys. Rev. B 50, 13379 (1994).

    Article  CAS  Google Scholar 

  6. S. Ko, C.K. Banerjee, and J. Sankar, Compos. B 42, 579 (2011).

    Article  Google Scholar 

  7. C. He, Y. Yu, X.F. Hu, and A. Larbot, Appl. Surf. Sci. 200, 238 (2002).

    Article  Google Scholar 

  8. N. Sobana, M. Muruganadham, and M. Swaminathan, J. Mol. Catal. A 258, 124 (2006).

    Article  CAS  Google Scholar 

  9. Q. Chen, W. Shi, Y. Xu, D. Wu, and Y. Sun, Mater. Chem. Phys. 1251, 825 (2011).

    Article  Google Scholar 

  10. J. Garcia-Serrano, E. Gomez-Hernandez, M. Ocampo- Fernandez, and U. Pal, Curr. Appl. Phys. 9, 1097 (2009).

    Article  Google Scholar 

  11. T. Trung, W.J. Cho, and C.S. Ha, Mater. Lett. 57, 2746 (2003).

    Article  CAS  Google Scholar 

  12. C.H. Lu and M.C. Wen, J. Alloys Compd. 448, 153 (2008).

    Article  CAS  Google Scholar 

  13. B. Jiang, H. Yin, T. Jiang, J. Yan, Z. Fan, C. Li, J. Wu, and Y. Wada, Mater. Chem. Phys. 92, 595 (2005).

    Article  CAS  Google Scholar 

  14. D. Byun, Y. Jin, B. Kim, J.K. Lee, and D. Park, J. Hazard. Mater. 73, 199 (2000).

    Article  CAS  Google Scholar 

  15. E. Gyorgy, G. Socol, E. Axente, I.N. Mihailescu, C. Ducu, and S. Cluca, Appl. Surf. Sci. 247, 429 (2005).

    Article  Google Scholar 

  16. K. Funke, Prog. Solid State Chem. 22, 111 (1993).

    Article  CAS  Google Scholar 

  17. A.K. Abdul Gafoor, J. Thomas, M.M. Musthafa, and P.P. Pradyumnan, J. Electron. Mater. 40, 2152 (2011).

    Article  CAS  Google Scholar 

  18. S. Mona and M.S.A. Abdel-Mottaleb, Inorg. Chem. Acta 360, 2863 (2007).

    Article  Google Scholar 

  19. H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, and Euro, J. Eur. Ceram. Soc. 23, 1457 (2003).

    Article  CAS  Google Scholar 

  20. D. Singh, P. Yadev, N. Singh, C. Kant, M. Kumar, S.D. Sharma, and K.K. Saini, J. Exp. NanoSci. (2011). doi:10.1080/17458080.2011.564215.

  21. A.T. Raghavender and K.M. Jadev, Bull. Mater. Sci. 32, 575 (2009).

    Article  CAS  Google Scholar 

  22. C. Koops, Phys. Rev. 83, 121 (1951).

    Article  CAS  Google Scholar 

  23. K. Karthik, S. Kesavapandian, and N. Victor Jaya, Appl. Surf. Sci. 256, 6829 (2010).

    Article  CAS  Google Scholar 

  24. I. Sakellis, A.N. Papathanassiou, and J. Grammatikakis, Appl. Phys. Lett. 97, 042904 (2010).

    Article  Google Scholar 

  25. M.S. Lee, S.-S. Hong, and M. Mohseni, J. Mol. Catal. A 242, 135 (2005).

    Article  CAS  Google Scholar 

  26. J. Yu, J. Xiong, B. Cheng, and S. Liu, Appl. Catal. B 60, 211 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Abdul Gafoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul Gafoor, A., Musthafa, M. & Pradyumnan, P. AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles. J. Electron. Mater. 41, 2387–2392 (2012). https://doi.org/10.1007/s11664-012-2174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2174-7

Keywords

Navigation