Skip to main content
Log in

Investigation of the Dielectric and Catalytic Properties of Silver(I) Oxide Nanoparticles for Energy Applications and Environmental Remediation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Herein, the structural, optical, dielectric, and catalytic properties of silver(I) oxide nanoparticles are reported. Fourier transform infrared spectroscopy was used to confirm the main characteristic peaks of silver oxide. X-ray diffraction and high-resolution transmission electron microscopy were used to determine the crystal structure and the particle size of silver oxide. Ag2O has cubic space group \(Pn\overline{3 }m\) symmetry with crystallite size of 115 nm. After annealing at 423 K for 12 h, the crystallite size increased to 156 nm. The electrical properties of silver oxide nanoparticles are reported over a frequency range from 100 Hz to 7.9 × 105 Hz and at selected temperatures in the range of 298–448 K. It was found that the relaxation process is associated with an activation energy (ΔE = 0.23 eV). Using the Kubelka-Munk function, direct optical band transition values of \(1.8 \, \mathrm{ eV \; and \; }2.2 \, \mathrm{eV}\) were found for Ag2O at room temperature (298 K), which decreased to 1.78 eV and 2.18 eV for powder annealed at 423 K for 12 h, respectively. The electrical behavior and conduction mechanism of the silver oxide nanoparticles were studied by Jonscher’s law and then the correlated barrier hopping model. The catalytic properties of silver oxide nanoparticles were successfully achieved. Finally, we believe that our study has value for energy applications and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Das, D. Bharatiya, B. Parhi, and S.K. Swain, Influential factors modulating the dielectric behaviour of transition metal oxide nanocomposites for energy storage applications: a-state-of-the-art review. J. Energy Storage 73, 108930 (2023).

    Article  Google Scholar 

  2. D. Bharatiya, B. Parhi, H. Sahu, and S.K. Swain, Factors influencing the dielectric properties of GO/MO nanocomposites. J. Mater. Sci. Mater. Electron. 34, 452 (2023).

    Article  CAS  Google Scholar 

  3. A.M. Hassanien, A.A.A. Darwish, S.I. Qashou, A.A. Atta, and T.A. Altalhi, Fabrication and description of amorphous Ge33Se47Sn20 films for optical applications. J. Electron. Mater. 52, 4495 (2023).

    Article  CAS  Google Scholar 

  4. Q. Ge, M. Zhu, X. Gao, Y. Zhao, and G. Feng, Fabrication and characteristics of a zinc oxide tunnel effect transistor with high current output. J. Electron. Mater. 52, 6911 (2023).

    Article  CAS  Google Scholar 

  5. Z. Sarwar, M. Umair, Y. Javed, S. Hussain, N.A. Shad, A. Jilani, A.A. Shah, M. Azam, and S. Ashraf, Effect of cerium oxide and rGO conjugation on the electrochemical energy storage traits of V2O5 nanomaterials. J. Electron. Mater. 52, 6578 (2023).

    Article  CAS  Google Scholar 

  6. H.D. Kyomuhimbo, and U. Feleni, Catalytic and energy storage applications of metal/polyaniline nanocomposites: a critical review. J. Electron. Mater. 51, 5568 (2022).

    Article  CAS  Google Scholar 

  7. A.M. Hassanien, A.A.A. Darwish, S.I. Qashou, S.E. Al Garni, and T.A. Hamdalla, Temperature dependency of electronic and optoelectronic performance of 2,4-Bis[4-(N, N-dibenzylamino)-2,6-dihydroxyphenyl]squaraine/n-Si organic/inorganic heterojunction for photovoltaic application. Phys. B Condens. Matter 666, 415110 (2023).

    Article  CAS  Google Scholar 

  8. I. Heng, F.W. Low, C.W. Lai, J.C. Juan, and S.K. Tiong, Hybrid graphene titanium nanocomposites and their applications in energy storage devices: a review. J. Electron. Mater. 49, 1777 (2020).

    Article  CAS  Google Scholar 

  9. F. Pino, I. Zarazúa, A. Alatorre-Ordaz, G. Martínez-Rodríguez, J.L. Cabellos, and T. López-Luke, Experimental parameters effect on the ITO/PEDOT:PSS/MAPbI3/PCBM/Ag inverted organic perovskite photovoltaic solar cell efficiency. J. Electron. Mater. 52, 5834 (2023).

    Article  CAS  Google Scholar 

  10. W. Yua, X. Liub, H. Chub, G. Zhuc, J. Lia, J. Liua, L. Niub, Z. Suna, and L. Pan, Enhancement of visible light photocatalytic activity of Ag2O/F-TiO2 composites. J. Mol. Catal. A Chem. 407, 25 (2015).

    Article  Google Scholar 

  11. J. Ashok, M.G. Brik, V. Ravi Kumar, and N. Veeraiah, Energy band structure and optical band gap calculations of AgSbO3 photo-catalystic pyrochlore crystal phase embedded in Ag2O doped sodium antimonate glass ceramics. Optik 206, 164345 (2020).

    Article  CAS  Google Scholar 

  12. P. Naresh, N. Narsimlu, Ch. Srinivas, Md. Shareefuddin, and K.S. Kumar, Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J. Non-Cryst. Solids 549, 120361 (2020).

    Article  CAS  Google Scholar 

  13. M. Abdul Muhsien, and H.H. Hamdan, Preparation and characterization of p-Ag2O/n-Si Heterojunction devices produced by rapid thermal oxidation. Energy Proc. 18, 300 (2012).

    Article  CAS  Google Scholar 

  14. J. Pierson and C. Rousselot, Stability of reactively sputtered silver oxide films. Surf. Coat. Technol. 200, 276 (2005).

    Article  CAS  Google Scholar 

  15. G. Xiao-Yong, F. Hong-Liang, M. Jiao-Min, Z. Zeng-Yuan, L. Jing-Xiao, C. Yong-Sheng, Y. Shi-E, and G. Jin-Hua, Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Phys. B. Condens. Matter. 405, 1922 (2010).

    Article  Google Scholar 

  16. S. Sagadevan, S.F. Alshahateet, J.A. Lett, I. Fatimah, R.P. Sivasankaran, A.K. Sibhatu, E. Leonard, M.V. Le, and T. Soga, Highly efficient photocatalytic degradation of methylene blue dye over Ag2O nanoparticles under solar light irradiation. Inorg. Chem. Commun. 148, 110288 (2023).

    Article  CAS  Google Scholar 

  17. A.I. Oje, A.A. Ogwu, M. Mirzaeian, and N. Tsendzughul, Electrochemical energy storage of silver and silver oxide thin films in an aqueous NaCl electrolyte. J. Electroanal. Chem. 829, 59 (2018).

    Article  CAS  Google Scholar 

  18. E. Elaiyappillai, S. Kogularasu, S.M. Chen, and M. Akilarasan, Sonochemically recovered silver oxide nanoparticles from the wastewater of photo film processing units as an electrode material for supercapacitor and sensing of 2, 4, 6-trichlorophenol in agricultural soil samples. Ultrason. Sonochem. 50, 255 (2019).

    Article  CAS  Google Scholar 

  19. F. Rahnama, H. Ashrafi, M. Akhond, and G. Absalan, Introducing Ag2O-Ag2CO3/rGO nanoadsorbents for enhancing photocatalytic degradation rate and efficiency of Congo red through surface adsorption. Colloids Surf A Physicochem Eng Asp 613, 126068 (2021).

    Article  CAS  Google Scholar 

  20. C. Liu, J. Xu, X. Du, Q. Li, Y. Fu, and M. Chen, Synthesis of Ag2O–KNbO3 heterojunction photocatalysts with enhanced visible-light-responsive photocatalytic performance for sulfamethoxazole degradation. Opt. Mater. 112, 110742 (2021).

    Article  CAS  Google Scholar 

  21. A. Al-Sarraj, B. Salah, A.I. Ayesh, K.M. Saoud, A.A. El Mel, A. Ur Rehman, A. Bermak, and Y. Haik, Fabrication of Ag2O/WO3 based sensors for detection of hydrogen sulfide. Sens. Actuators A Phys. 333, 113256 (2022).

    Article  CAS  Google Scholar 

  22. E. Lund, A. Galeckas, A. Azarov, E.V. Monakhov, and B.G. Svensson, Photoluminescence of reactively sputtered Ag2O films. Thin Solid Films 536, 156 (2013).

    Article  CAS  Google Scholar 

  23. J. Cao, P. Ju, Z. Chen, K. Dou, J. Li, P. Zhang, Z. Zhu, and C. Sun, Trash to treasure: green synthesis of novel Ag2O/Ag2CO3 Z-scheme heterojunctions with highly efficient photocatalytic activities derived from waste mussel shells. Chem. Eng. J. 454, 140259 (2023).

    Article  CAS  Google Scholar 

  24. E. Sanli, B.Z. Uysal, and M.L. Aksu, The oxidation of NaBH4 on electrochemically treated silver electrodes. Int. J. Hydrog. Energy 33, 2097 (2008).

    Article  CAS  Google Scholar 

  25. M.T. Galante, P. Sotelo, M.K. Hossain, A. Vali, A. Raamann, C. Longo, R.T. Macaluso, and K. Rajeshwar, Silver oxide-based semiconductors for solar fuels production and environmental remediation: a solid-state chemistry approach. ChemElectroChem 5, 1 (2018).

    Google Scholar 

  26. Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki, Direct electrodeposition of 1.46 eV band gap silver (I) oxide semiconductor films by electrogenerated acid. Chem. Mater. 20, 1254 (2008).

    Article  CAS  Google Scholar 

  27. V.V. Petrov, T.N. Nazarova, A.N. Korolev, and N.F. Kopilova, Thin sol–gel SiO2–SnOx–AgOy films for low temperature ammonia gas sensor. Sens. Actuator B Chem. 133, 291 (2008).

    Article  CAS  Google Scholar 

  28. A. Subrahmanyam and P.S. Kumar, Nano silver oxide thin films for optical memories: new results. IETE J. Res. 52, 365 (2006).

    Article  Google Scholar 

  29. A. Shah, S. Haq, W. Rehman, M. Waseem, S. Shoukat, and M.-U. Rehman, Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles. Mater. Res. Express 6, 045045 (2019).

    Article  Google Scholar 

  30. S.P. Vinay, H.N. Udayabhanu, G. Sumedha, S. Nagaraju, and N.C. Harishkumar, Facile combustion synthesis of Ag2O nanoparticles using cantaloupe seeds and their multidisciplinary applications. Appl. Organomet. Chem. 34, e5830 (2020).

    Article  CAS  Google Scholar 

  31. S. Iqbal, M. Fakhar-e-Alam, F. Akbar, M. Shafiq, M. Atif, N. Amin, M. Ismail, A. Hanif, and W.A. Farooq, Application of silver oxide nanoparticles for the treatment of cancer. J. Mol. Struct. 1189, 203 (2019).

    Article  CAS  Google Scholar 

  32. A.A. Rokade, M.P. Patil, S.I. Yoo, W.K. Lee, and S.S. Park, Pure green chemical approach for synthesis of Ag2O nanoparticles. Green Chem. Lett. Rev. 9, 216 (2016).

    Article  CAS  Google Scholar 

  33. W. Lu, J. Shu, Z. Wang, N. Huang, and W. Song, The intrinsic oxidase-like activity of Ag2O nanoparticles and its application for colorimetric detection of sulfite. Mater. Lett. 154, 33 (2015).

    Article  CAS  Google Scholar 

  34. M.M. Rahman, S.B. Khan, A.M. Asiri, and A.G. Al-Sehemi, Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim. Acta 112, 422 (2013).

    Article  CAS  Google Scholar 

  35. C. Hao, W. Wang, R. Zhang, B. Zou, and H. Shi, Enhanced photoelectrochemical water splitting with TiO2@Ag2O nanowire arrays via p-n heterojunction formation. Sol. Energy Mater. Sol. Cells 174, 132 (2018).

    Article  CAS  Google Scholar 

  36. W. Wang, Q. Zhao, J. Dong, and J. Li, A novel silver oxides oxygen evolving catalyst for water splitting. Int. J. Hydrog. Energy 36, 7374 (2011).

    Article  CAS  Google Scholar 

  37. M.S.S. Danish, L.L. Estrella-Pajulas, I.M. Alemaida, M.L. Grilli, A. Mikhaylov, and T. Senjyu, Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals 12, 769 (2022).

    Article  CAS  Google Scholar 

  38. A. Ahmad, J. Liu, X. Liu, L. Li, Y. Xu, and X. Guo, Synthesis of Ag2O nano-catalyst in the spherical polyelectrolyte brushes and its application in visible photo driven degradation of dye. E-Polymers 16, 57 (2016).

    Article  CAS  Google Scholar 

  39. S. Sinha, N.A. Devi, S. Nongthombam, R. Bhujel, S. Rai, G. Sarkar, and B.P. Swain, Investigation of optical, electrical and electrochemical properties of polyaniline/rGO/Ag2O nanocomposite. Diam. Relat. Mater. 107, 107885 (2020).

    Article  CAS  Google Scholar 

  40. L.G. Alharbe, Study of the structural, optical, and electrical properties of polyethylene oxide/polyvinylidene fluoride (PEO/PVDF) blend dispersed with silver oxide (Ag2O) nanoparticles as an advanced multifunctional matrix for flexible electronic devices. Phys. B 666, 415100 (2023).

    Article  CAS  Google Scholar 

  41. Y. Wu, L. Wang, X. He, and Z. Yi, An alkaline-acid asymmetric electrolyzer using NiCoP/CoP/Co3O4 multi-shell hollow nanoflakes as cathode and Ag as anode to realizing energy efficient production of hydrogen and shape controllable silver oxide. Int. J. Hydrog. 48, 12958 (2023).

    Article  CAS  Google Scholar 

  42. A. Al-Sarraj, B. Salah, A.I. Ayesh, K.M. Saoud, A.A. El Mel, A. Ur Rehman, A. Bermak, and Y. Haik, Fabrication of Ag2O/WO3 based sensors for detection of hydrogen sulfide. Sens. Actuator A Phys. 333, 113256 (2022).

    Article  CAS  Google Scholar 

  43. T. Wang, S. Gu, Y. Fang, D. Zhang, X. Xie, Z. Qu, Y. Wang, X. Zhao, J. Wu, C.C. Lee, and Y. Huo, Plasma-induced growth mechanism of surface-state silver oxide in nanoscale for low-temperature bonding technology. Mater Charact 199, 112830 (2023).

    Article  CAS  Google Scholar 

  44. M. Taunk, and N. Singh, A comparative analysis of x-ray diffraction, morphology, and optical properties of sonochemically synthesized cupric oxide nanostructures. J. Electron. Mater. 52, 6888 (2023).

    Article  CAS  Google Scholar 

  45. A.A. Alkathiri, A.A. Atta, M.S. Refat, S. Shakya, A.M. Hassanien, S.A. Algarni, E.M. Ahmed, S.E. Alomariy, M. Alsawat, and N. Algethami, Impedance spectroscopy and DFT/TD-DFT studies of diyttrium trioxide for optoelectronic fields. J. Rare Earths 41, 605 (2023).

    Article  CAS  Google Scholar 

  46. M.M. El-Nahass, A.M. Hassanien, A.A. Atta, E.M. Ahmed, and A.A. Ward, Electrical conductivity and dielectric relaxation of cerium (IV) oxide. J. Mater. Sci. Mater. Electron. 28, 1501 (2017).

    Article  CAS  Google Scholar 

  47. T. Altalhi, A.A. Gobouri, L.M. Al-Harbi, M.S. Refat, M.M. El-Nahass, A.M. Hassanien, A.A. Atta, and E.M. Ahmed, Structural, diffuse reflectance spectroscopy and dielectric relaxation properties of zirconium (IV) dioxide. J. Mater. Res. Technol. 12, 1194 (2021).

    Article  CAS  Google Scholar 

  48. T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, The HighScore suite. Powder Diffr. 29(S2), S13–S18 (2014).

    Article  CAS  Google Scholar 

  49. ICDD PDF 2, Database Sets 1–45; The international centre for diffraction data: PA, USA, (1995).

  50. P. Norby, R. Dinnebier, and A.N. Fitch, Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3. Inorg. Chem. 41, 3628 (2002).

    Article  CAS  Google Scholar 

  51. L. Lutterotti and P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23, 246 (1990).

    Article  CAS  Google Scholar 

  52. L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010).

    Article  CAS  Google Scholar 

  53. S.M.S. Al-Mufti, A. Almontasser, and S.J.A. Rizvi, Influence of temperature variations on the dielectric parameters of thermally reduced graphene oxide. Mater. Today Proc. 57, 1713 (2022).

    Article  CAS  Google Scholar 

  54. A.M. Hassanien, A.A. Atta, A.W. Azza, E.M.A. Ahmed, A. Alsubaie, M.M. El-Nahass, and T. Altalhi, Investigation of structural, electrical and optical properties of chitosan/fullerene composites. Mater. Res. Express 6, 125304 (2019).

    Article  CAS  Google Scholar 

  55. M. Morsi, S.A. El-Khodary, and A. Rajeh, Enhancement of the optical, thermal and electrical properties of PEO/PAM: Li polymer electrolyte films doped with Ag nanoparticles. Phys. B Condens. Matter. 539, 88 (2018).

    Article  CAS  Google Scholar 

  56. A. Alrooqi, Z.M. Al-Amshany, L.M. Al-Harbi, T.A. Altalhi, M.S. Refat, A.M. Hassanien, and A.A. Atta, Impact of charge transfer complex on the dielectric relaxation processes in poly(methyl methacrylate) polymer. Molecules 27, 1993 (2022).

    Article  CAS  Google Scholar 

  57. Y. Xi, Y. Bin, C.K. Chiang, and M. Matsuo, Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 45, 1302 (2007).

    Article  CAS  Google Scholar 

  58. L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, and A. Rajeh, Tuning optical, dielectric, and electrical properties of polyethylene oxide/carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices. J. Mol. Struct. 1272, 134244 (2023).

    Article  CAS  Google Scholar 

  59. R. Cimbala, P. Havran, J. Király, M. Rajňák, J. Kurimsky, M. Šárpataky, B. Dolník, and K. Paulovičová, Dielectric response of a hybrid nanofluid containing fullerene C60 and iron oxide nanoparticles. J. Mol. Liq. 359, 119338 (2022).

    Article  CAS  Google Scholar 

  60. J.D. Menczel and R.B. Prime, Thermal analysis of polymers: fundamentals and applications (Hoboken, New Jersey: Wiley, 2009).

    Book  Google Scholar 

  61. P.B. Macedo, C.T. Moynihan, and R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171 (1972).

    CAS  Google Scholar 

  62. V.A. Adhwaryu and D.K. Kanchan, Ag+ ion conduction in AgI-Ag2O-B2O3-P2O5 glass electrolyte. Mater. Sci. Eng. B 263, 114857 (2021).

    Article  CAS  Google Scholar 

  63. A.K. Rizos, J. Alifragis, K.L. Ngai, and P. Heitjans, Near constant loss in glassy and crystalline LiAlSi2O6 from conductivity relaxation measurements. J. Chem. Phys. 114, 931 (2001).

    Article  CAS  Google Scholar 

  64. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  65. C.R. Mariappana, G. Govindaraja, and B. Roling, Lithium and potassium ion conduction in A3TiB`P3O12 (A=Li, K; BV=Zn, Cd) NASICON-type glasses. Solid State Ion. 176, 723 (2005).

    Article  Google Scholar 

  66. I. Gouti, D.M. Blanco, S. García-Granda, K. Khirouni, and H. Litaiem, Magnetic and optical properties, electrical behavior and conduction mechanism study by CBH model of Cu(HAsO3) Te(OH)6 compound. Mater. Sci. Eng. B 286, 115975 (2022).

    Article  CAS  Google Scholar 

  67. K.B. Brahim, A. Oueslati, and M. Gargouri, Electrical conductivity and vibrational studies induced phase transitions in [(C2H5)4N]FeCl4. RSC Adv. 8, 40676 (2018).

    Article  Google Scholar 

  68. H. Kchaou, A. Ben Rhaiem, K. Karoui, F. Jomni, and K. Guidara, Electrical properties and phase transition of [(CH3)3NH]CdCl3 compound. Appl. Phys. A 122, 82 (2016).

    Article  Google Scholar 

  69. B. Philips-Invernizzi, D. Dupont, and C. Caze, Bibliographical review for reflectance of diffusing media. Opt. Eng. 40, 1082 (2001).

    Article  Google Scholar 

  70. V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kuma, and P.R. Sagdeo, Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semicond. Process. 86, 151 (2018).

    Article  CAS  Google Scholar 

  71. T. Altalhi, A.A. Gobouri, M.S. Refat, M.M. El-Nahass, A.M. Hassanien, A.A. Atta, H.A. Saad, and A.N. Alhazaa, Structural, electrochemical and optical properties of 1,2,4-triazine derivative. Appl. Phys. A 126, 815 (2020).

    Article  CAS  Google Scholar 

  72. C. Zhang, Z. Zhu, and H. Zhang, Mg-based amorphous alloys for decolorization of azo dyes. Results Phys. 7, 2054 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Deanship of Scientific Research, Taif University, for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Hassanien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.M., Atta, A.A., Altalhi, T.A. et al. Investigation of the Dielectric and Catalytic Properties of Silver(I) Oxide Nanoparticles for Energy Applications and Environmental Remediation. J. Electron. Mater. 53, 65–74 (2024). https://doi.org/10.1007/s11664-023-10799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10799-8

Keywords

Navigation