Skip to main content
Log in

Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage (V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A.L. Johnson, S. Fujita, W.H. Rowland, W.C. Hughes, J.W. Cook, and J.F. Schetzina, J. Electron. Mater. 25, 855 (1996).

    Article  CAS  Google Scholar 

  2. R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J.B. Halpern, M.G. Spencer, Y.X. Li, L.G. Salamanca-Riba, A.A. Iliadis, and K.A. Jones, Appl. Phys. Lett. 73, 348 (1998).

    Article  CAS  Google Scholar 

  3. H.J. Ko, Y.F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, Appl. Phys. Lett. 77, 537 (2000).

    Article  CAS  Google Scholar 

  4. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005).

    Article  CAS  Google Scholar 

  5. J.-K. Jeong, H.W. Yang, J.H. Jeong, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 93, 123508 (2008).

    Article  Google Scholar 

  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London) 432, 488 (2004).

    Article  CAS  Google Scholar 

  7. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.-H. Park, and D.A. Keszler, J. Appl. Phys. 97, 064505 (2005).

    Article  Google Scholar 

  8. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005).

    Article  Google Scholar 

  9. M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.-S. Park, J.K. Jeong, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 90, 212114 (2007).

    Article  Google Scholar 

  10. David C. Paine, Burag Yaglioglu, Zach Beiley, and Sunghwan Lee, Thin Solid Films 516, 5894 (2008).

    Article  CAS  Google Scholar 

  11. K. Jang, H. Park, S. Jung, N.V. Duy, Y. Kim, J. Cho, H. Choi, T. Kwon, W. Lee, D. Gong, S. Park, J. Yi, D. Kim, and H. Kim, Thin Solid Films 518, 2808 (2010).

    Article  CAS  Google Scholar 

  12. W.J. Park, H.S. Shin, B.D. Ahn, G.H. Kim, S.M. Lee, K.H. Kim, and H.J. Kim, Appl. Phys. Lett. 93, 083508 (2008).

    Article  Google Scholar 

  13. Y.K. Moon, D.Y. Moon, S. Lee, S.H. Lee, C.O. Jeong, and J.W. Park, J. Vac. Sci. Technol. B 26, 1472 (2008).

    Article  CAS  Google Scholar 

  14. Y.K. Moon, D.Y. Moon, S.H. Lee, C.O. Jeong, and J.W. Park, J. Nanosci. Nanotechnol. 8, 4557 (2008).

    Article  CAS  Google Scholar 

  15. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

  16. J. Gutowski, N. Presser, and I. Broser, Phys. Rev. B 38, 9746 (1988).

    Article  CAS  Google Scholar 

  17. W.J. Lee, J.G. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006).

    Article  Google Scholar 

  18. Z.G. Yu, H. Gong, and P. Wu, Appl. Phys. Lett. 86, 212105 (2005).

    Article  Google Scholar 

  19. H.S. Kim, S.J. Pearton, D.P. Norton, and F. Ren, J. Appl. Phys. 102, 104904 (2007).

    Article  Google Scholar 

  20. Faruque.M. Hossaina, J. Nishiia, S. Takagia, Sugiharad, A. Ohtomoa, T. Fukumura, H. Koinumaa, H. Ohnoc, and M. Kawasakia, Phys. E 21, 911 (2004).

    Article  Google Scholar 

  21. Y.K. Moon, S. Lee, D.H. Kim, J.H. Lee, C.O. Jeong, and J.W. Park, J. Korean Phys. Soc. 54, 121 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Wan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, DS., Moon, YK., Lee, S. et al. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors. J. Electron. Mater. 41, 2380–2386 (2012). https://doi.org/10.1007/s11664-012-2166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2166-7

Keywords

Navigation