Skip to main content
Log in

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The fabrication and characterization of silicon nanowire (NW) array/spin-on glass (SOG) composite films for thermoelectric devices are presented. Interference lithography was used to pattern square lattice photoresist templates over entire 2 cm × 2 cm n-type Si substrates. The photoresist pattern was transferred to a SiO2 hard mask for a single-step deep reactive ion Si etch. The resulting Si NW arrays were 1 μm tall with 15% packing density, and the individual NWs had diameters of 80 nm to 90 nm with vertical sidewalls. The Si NW arrays were embedded in SOG to form a dense and robust composite material for device fabrication and thin-film characterization. The thermal conductivity of the Si NW/SOG composite film was measured to be a constant 1.45 ± 0.2 W/m-K from 300 K to 450 K. An effective medium model was then used to extract a thermal conductivity of 7.5 ± 1.7 W/m-K for the Si nanowires from the measured Si NW/SOG values. The cross-plane Seebeck coefficient of the Si NWs was measured to be −284 ± 26 μV/K, which is comparable to −310 μV/K for bulk Si. Power generation from the combined Si NW/SOG and substrate devices is also presented, and the maximum generated power was found to be 29.3 μW with ΔT of 56 K for a 50 μm × 50 μm device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Brinson and W. Dunstant, J. Phys. C: Solid State Phys. 3, 483 (1970).

    Article  CAS  Google Scholar 

  2. L. Weber and E. Gmelin, Appl. Phys. A: Solids Surf. 53, 136 (1991).

    Article  Google Scholar 

  3. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  4. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, and W.A. Goddard, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  5. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J.R. Heath, Nat. Nanotechnol. 5, 718 (2010).

    Article  CAS  Google Scholar 

  6. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2010).

    Article  Google Scholar 

  7. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  CAS  Google Scholar 

  8. R.G. Mathur, R.M. Mehra, and P.C. Mathur, J. Appl. Phys. 83, 5855 (1998).

    Article  CAS  Google Scholar 

  9. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  CAS  Google Scholar 

  10. A.R. Abramson, W.C. Kim, S.T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C.-L. Tien, and P. Yang, J. Microelectromech. Syst. 13, 505 (2004).

    Article  CAS  Google Scholar 

  11. D. Dávila, A. Tarancón, D. Kendig, M. Fernández-Regúlez, N. Sabaté, M. Salleras, C. Calaza, C. Cané, I. Gràcia, E. Figueras, J. Santander, A. San Paulo, A. Shakouri, and L. Fonseca, J. Electron. Mater. 40, 851 (2011).

    Article  Google Scholar 

  12. Y. Li, K. Buddharaju, N. Singh, G. Lo, and S. Lee, IEEE Electron Dev. Lett. 32, 674 (2011).

    Article  CAS  Google Scholar 

  13. J. de Boor, N. Geyer, J.V. Wittemann, U. Gösele, and V. Schmidt, Nanotechnology 21, 095302 (2010).

    Article  Google Scholar 

  14. Y.-J. Hung, S.-L. Lee, Y.-T. Pan, B.J. Thibeault, and L.A. Coldren, J. Vac. Sci. Technol. B 28, 1030 (2010).

    Article  CAS  Google Scholar 

  15. W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C.V. Thompson, and M.H. Hong, Nano Lett. 8, 3799 (2008).

    Article  CAS  Google Scholar 

  16. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  CAS  Google Scholar 

  17. D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 6077 (1994).

    Article  CAS  Google Scholar 

  18. T. Tong and A. Majumdar, Rev. Sci. Instrum. 77, 104902 (2006).

    Article  Google Scholar 

  19. A.I. Persson, Y.K. Koh, D.G. Cahill, L. Samuelson, and H. Linke, Nano Lett. 9, 4484–4488 (2009).

    Article  CAS  Google Scholar 

  20. R.M. Costescu, A.J. Bullen, G. Matamis, K.E. O’Hara, and D.G. Cahill, Phys. Rev. B 65, 094205 (2002).

    Article  Google Scholar 

  21. S.M. Eichfeld, T.-T. Ho, C.M. Eichfeld, A. Cranmer, S.E. Mohney, T.S. Mayer, and J.M. Redwing, Nanotechnology 18, 315201 (2007).

    Article  Google Scholar 

  22. A. Chaudhry, V. Ramamurthi, E. Fong, and M.S. Islam, Nano Lett. 7, 1536 (2007).

    Article  CAS  Google Scholar 

  23. Y.E. Yaish, A. Katsman, G.M. Cohen, and M. Beregovsky, J. Appl. Phys. 109, 094303 (2011).

    Article  Google Scholar 

  24. P.M. Mayer and R.J. Ram, Nanoscale Microscale Thermophys. Eng. 10, 143 (2006).

    Article  Google Scholar 

  25. S.M. Woodruff, N.S. Dellas, B.Z. Liu, S.M. Eichfeld, T.S. Mayer, J.M. Redwing, and S.E. Mohney, J. Vac. Sci. Technol. B 26, 4 (2008).

    Article  Google Scholar 

  26. G. Chen, B. Yang, W.L. Liu, T. Borca-Tasciuc, D. Song, D. Achimov, M.S. Dresselhaus, J.L. Liu, and K. Wang, 20th International Conference on Thermoelectrics Proceedings 30 (2001).

  27. H.H. Solak, J. Phys. D Appl. Phys. 39, R171 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Curtin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, B.M., Fang, E.W. & Bowers, J.E. Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices. J. Electron. Mater. 41, 887–894 (2012). https://doi.org/10.1007/s11664-012-1904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1904-1

Keywords

Navigation