Skip to main content
Log in

Fabrication of Nanocomposite Thermoelectric Materials by a Pulsed Laser Deposition Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We applied a pulsed laser deposition (PLD) technique to fabricate nanocomposite half-Heusler thermoelectrics by employing two different methods: a dry process and a wet process. First, we tried to obtain nanosized thermoelectric particles by using PLD in a liquid solvent. Nanosized (<100 nm) spherical and crystalline half-Heusler particles containing Ti, Zr, Hf, Ni, and Sn elements were obtained by this method, showing good controllability of stoichiometry. The key is to select a solvent that prevents oxidation. Second, the dry PLD process was employed to coat the thermoelectric powder with metal oxides. To this end, we developed a PLD coating apparatus. After sintering the coated powder using the spark plasma sintering (SPS) technique, we confirmed that a nanosized layer of the metal oxides was uniformly formed at the grain boundaries of the half-Heusler matrix. With these two examples, the capability of the PLD techniques to fabricate well-controlled nanocomposite thermoelectric materials is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  2. X.Y. Huang, Z. Xu, and L.D. Chen, Solid State Commun. 130, 181 (2004).

    Article  CAS  Google Scholar 

  3. L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and B. Zhang, J. Appl. Phys. 99, 064305 (2006).

    Article  Google Scholar 

  4. R. Joseph, Chem. Mater. 18, 4993 (2006).

    Article  Google Scholar 

  5. Y. Nishino and T. Hirano, Jpn. J. Appl. Phys. Pt. 1 36, 170 (1997).

    Article  Google Scholar 

  6. T. Katayama, S.W. Kim, Y. Kimura, and Y. Mishima, J. Electron. Mater. 32, 1160 (2003).

    Article  CAS  Google Scholar 

  7. S.R. Culp, S.J. Poon, N. Hickman, and T.M. Tritt, Appl. Phys. Lett. 88, 042106 (2006).

    Article  Google Scholar 

  8. N. Shutoh and N. Sakurada, J. Alloys Compd. 389, 204 (2005).

    Article  CAS  Google Scholar 

  9. A. Henglein, J. Phys. Chem. 97, 5457 (1993).

    Article  CAS  Google Scholar 

  10. A.J. Vreugdenhil, K.K. Pilatzke, and J.M. Parnis, J. Non-Cryst. Solid. 352, 3879 (2006).

    Article  CAS  Google Scholar 

  11. F. Mafune and T. Kondow, Chem. Phys. Lett. 383, 343 (2004).

    Article  CAS  Google Scholar 

  12. D. Wang and Y. Li, J. Am. Chem. Soc. 132, 6280 (2010).

    Article  CAS  Google Scholar 

  13. J.R. Fernandez, I.P. Santos, J.P. Juste, F.J.G. de Abajo, and M.L. Marzan, J. Phys. Chem. C 111, 13361 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Matsubara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsubara, M., Azuma, H. & Asahi, R. Fabrication of Nanocomposite Thermoelectric Materials by a Pulsed Laser Deposition Method. J. Electron. Mater. 40, 1176–1180 (2011). https://doi.org/10.1007/s11664-011-1575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1575-3

Keywords

Navigation