Skip to main content

Advertisement

Log in

Room-Temperature Fabrication of a Flexible Thermoelectric Generator Using a Dry-Spray Deposition System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a flexible thermoelectric (TE) generator with titanium dioxide (TiO2), antimony (Sb), and tellurium (Te) powders fabricated by a nanoparticle deposition system (NPDS). NPDS is a novel low-energy consumption dry-spray method that enables the deposition of inorganic materials on substrates at room temperature and under low vacuum. TiO2 nanopowders were dispersed on a TE powder for improved adhesion between TE films and the substrate. Film morphologies were investigated using field-emission scanning electron microscopy, and the phase structure was analyzed by x-ray diffraction. A TE leg, deposited with 3 wt.% TiO2 content, had the largest Seebeck coefficient of approximately 160 μV/K. The prototype TE generator consisted of 16 TE legs linked by silver interconnects over an area of 20 mm × 60 mm. The prototype produced a voltage of 48.91 mV and a maximum power output of 0.18 μW from a temperature gradient of 20 K. The values are comparable to that of conventional methods. These results suggest that flexible TE generators can be fabricated by energy efficient methods, although internal and contact resistances must be decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Leonov and R. Vullers, J. Renew. Sust. Energ. 1, 062701 (2009).

    Article  Google Scholar 

  2. R. Buchner, K. Froehner, C. Sosna, W. Benecke, and W. Lang, J. Microelectromech. Syst. 17, 1114 (2008).

    Article  Google Scholar 

  3. J.R. Buckle, A. Knox, J. Siviter, and A. Montecucco, J. Electron. Mater. 42, 2214 (2013).

    Article  Google Scholar 

  4. S.H. Lee, J.H. Lee, C.W. Park, C.Y. Lee, K.S. Kim, D.H. Tahk, and M.K. Kwak, Int. J. Precis. Eng. Man. Green. Tech. 1, 119 (2014).

    Article  Google Scholar 

  5. C. Navone, M. Soulier, M. Plissonnier, and A.L. Seiler, J. Electron. Mater. 39, 1755 (2010).

    Article  Google Scholar 

  6. Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, and H.H. Hng, Small 10, 3551 (2014).

    Article  Google Scholar 

  7. S.D. Kwon, B.K. Ju, S.J. Yoon, and J.S. Kim, J. Electron. Mater. 38, 920 (2009).

    Article  Google Scholar 

  8. L. Francioso, C.D. Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, and A. Perrone, J. Power Sources 196, 3239 (2011).

    Article  Google Scholar 

  9. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Sens. Actuators A Phys. 138, 329 (2007).

    Article  Google Scholar 

  10. S.J. Kim, J.H. We, and B.J. Cho, Energ. Environ. Sci 7, 1959 (2014).

    Article  Google Scholar 

  11. D.M. Chun, J.O. Choi, C.S.Y. Lee, I. Kanno, H. Kotera, and S.H. Ahn, Int. J. Precis. Eng. Man. 13, 1107 (2012).

    Article  Google Scholar 

  12. M.H. Kim, K.S. Kim, J.W. Lee, M.S. Kim, J.O. Choi, S.H. Ahn, and C.S. Lee, J. Nanosci. Nanotechnol. 12, 3478 (2012).

    Article  Google Scholar 

  13. S.I. Park, S.Y. Kim, J.O. Choi, J.H. Song, M. Taya, and S.H. Ahn, Thin Solid Films 589, 412 (2015).

    Article  Google Scholar 

  14. H.S. Kim, S.K. Yang, R.C. Pawar, S.H. Ahn, and C.S. Lee, Ceram. Int. 41, 5937 (2015).

    Article  Google Scholar 

  15. Y. Zhu, H. Shen, and H. Chen, Rare Met. 31, 43 (2012).

    Article  Google Scholar 

  16. Z. Cao, E. Koukharenko, R.N. Torah, J. Tudor, and S.P. Beeby, J Phys 557, 012016 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (MEST) (No. NRF-2010-0029227) and the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) was granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20142020103730) and LG Yonam Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, DS., Choi, JO. & Ahn, SH. Room-Temperature Fabrication of a Flexible Thermoelectric Generator Using a Dry-Spray Deposition System. J. Electron. Mater. 45, 2286–2290 (2016). https://doi.org/10.1007/s11664-015-4306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4306-3

Keywords

Navigation