Skip to main content
Log in

Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Harrison, J.H. Vincent, and H.A.H. Steen, Solder. Surf. Mt. Technol. 13, 21 (2001).

    Article  CAS  Google Scholar 

  2. S. Gadag and S. Patra, J. Electron. Mater. 29, 1392 (2000).

    Article  CAS  Google Scholar 

  3. Y.R. Desmond Chong, F.X. Che, H.L. John Pang, Ng. Kellin, Y.N. Jane Tan, T. Patrick, and H. Low, Microelectron. Reliab. 46, 1160 (2006).

    Article  Google Scholar 

  4. Yu. Hao and Jorma.K. Kivilahti, IEEE Trans. Compon. Packag. Technol. 29, 778 (2006).

    Article  Google Scholar 

  5. G.Y. LI and B.L. Chen, IEEE Trans. Compon. Packag. Technol. 26, 651 (2003).

    Article  CAS  Google Scholar 

  6. K.H. Prakash and T. Sritharan, Mater. Sci. Eng. A 379, 277 (2004).

    Article  Google Scholar 

  7. J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Sci. Technol. 19, 1101 (2003).

    Article  CAS  Google Scholar 

  8. Y.G. Lee and J.G. Duh, J. Mater. Sci. Mater. Electron. 11, 33 (2000).

    Article  Google Scholar 

  9. Noboru. Wade, W.U. Kepeng, Johji. KuniI, Seiji. Yamada, and Kazuya. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    Article  CAS  Google Scholar 

  10. B.L. Chen and G.Y. Li, IEEE Trans. Compon. Packag. Technol. 28, 534 (2005).

    Article  CAS  Google Scholar 

  11. C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, and Y.E. Shin, J. Mater. Sci. Mater. Electron. 14, 487 (2003).

    Article  CAS  Google Scholar 

  12. K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Article  Google Scholar 

  13. K. Zeng and J.K. Kivilahti, J. Electron. Mater. 30, 35 (2001).

    Article  CAS  Google Scholar 

  14. K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 3 (2003).

    Article  Google Scholar 

  15. W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).

    Article  CAS  Google Scholar 

  16. G.Y. Li, B.L. Chen, and J.N. Tey, IEEE Trans. Electron. Packag. Manuf. 27, 77 (2004).

    Article  CAS  Google Scholar 

  17. X. Ma, F. Wang, Y. Qian, and F. Yoshida, Mater. Lett. 57, 3361 (2003).

    Article  CAS  Google Scholar 

  18. D.B. Masson and B.K. Kirkpatrick, J. Electron. Mater. 15, 349 (1986).

    Article  CAS  Google Scholar 

  19. P.T. Vianco, Soldering Handbook (Miami, Florida: American Welding Society, 1999).

  20. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, and J.K. Lin, J. Mater. Res. 17, 291 (2002).

    Article  CAS  Google Scholar 

  21. J.S. Ha, C.S. Kang, J.Y. Park, and J.P. Jung, J. Electron. Mater. 29, 1207 (2000).

    Article  Google Scholar 

  22. H.K. Kim, H.K. Liou, and K.N. Tu, Appl. Phys. Lett. 66, 2337 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G.Y., Bi, X.D., Chen, Q. et al. Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints. J. Electron. Mater. 40, 165–175 (2011). https://doi.org/10.1007/s11664-010-1441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1441-8

Keywords

Navigation