Skip to main content
Log in

Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

β-Zn4Sb3 is one of the most important thermoelectric materials in the intermediate temperature range, but poor mechanical properties limit its commercial application. In this work we adopted a melt-spinning (MS) technique followed by a quick spark plasma sintering (SPS) procedure to fabricate nanostructured β-Zn4Sb3 bulk material with good thermoelectric performance and mechanical properties. The nanostructure had a significant influence on the thermoelectric transport properties and mechanical strength. Compared with the sample prepared by the traditional melting method (M-ingot), the Seebeck coefficient of the MS-SPS samples was significantly higher and the thermal conductivity was remarkably lower. In spite of the lower electrical conductivity, the σ/κ ratio increased in the high temperature range, leading to great improvement in the thermoelectric figure of merit (ZT). The maximum ZT value of 1.16 was obtained at 700 K for the MS-SPS-40 sample. Compared with the M-ingot sample, it was 47% higher at the same temperature. Moreover, the average compressive strength of the MS-SPS-40 sample reached 337.9 MPa, which is 130% higher than that of the M-ingot sample. β-Zn4Sb3 with such high mechanical strength has great potential for commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Mayer, I. Milahail, and K. Schubert, J. Less Common Met. 59, 43 (1978).

    Article  CAS  Google Scholar 

  2. M. Tapiero, S. Tarabichi, J.G. Gies, C. Noguet, J.P. Zielinger, M. Joucla, J.L. Loison, M. Robino, and J. Herion, Sol. Energy Mater. 12, 257 (1985).

    Article  ADS  CAS  Google Scholar 

  3. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, Chem. Eur. J. 10, 3861 (2004).

    Article  CAS  Google Scholar 

  5. S. Bhattacharya, R.P. Hermann, V. Keppens, T.M. Tritt, and G.J. Snyder, Phys. Rev. B 74, 134108 (2006).

    Article  ADS  CAS  Google Scholar 

  6. D. Spitzer, J. Phys. Chem. Solids 31, 19 (1970).

    Article  ADS  CAS  Google Scholar 

  7. G.S. Nolas, J. Poon, and M.G. Kanatzidis, MRS Bull. 31, 199 (2006).

    CAS  Google Scholar 

  8. T. Caillat, J. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  ADS  CAS  Google Scholar 

  9. T. Caillat, A. Borshchevsky, and J.P. Fleurial, Mater. Res. Soc. Symp. Proc. 478, 103 (1997).

    CAS  Google Scholar 

  10. V. Izard, M.C. Record, J.C. Tedenac, and S.G. Fries, Calphad 25, 567 (2001).

    Article  CAS  Google Scholar 

  11. M.C. Record, V. Izard, M. Bulanova, and J.C. Tedenac, Intermetallics 11, 1189 (2003).

    Article  CAS  Google Scholar 

  12. Y. Mozharivskyj, A.O. Pecharsky, S. Bud’ko, and G.J. Miller, Chem. Mater. 16, 1580 (2004).

    Article  CAS  Google Scholar 

  13. B.L. Pedersen and B.B. Iversen, Appl. Phys. Lett. 92, 161907 (2008).

    Article  ADS  CAS  Google Scholar 

  14. L.T. Zhang, M. Tsutsumi, K. Ito, and M. Yamaguchi, J. Alloys Compd. 358, 252 (2003).

    Article  CAS  Google Scholar 

  15. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C.H. Lee, and H. Obara, J. Alloys Compd. 384, 254 (2004).

    Article  CAS  Google Scholar 

  16. V. Izard, M.C. Record, and J.C. Tedenac, J. Alloys Compd. 345, 257 (2002).

    Article  CAS  Google Scholar 

  17. D. Cadavid and J.E. Rodríguez, Phys. B: Condens. Matter 403, 3976 (2008).

    Article  ADS  CAS  Google Scholar 

  18. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).

    Article  ADS  CAS  Google Scholar 

  19. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).

    Article  ADS  CAS  Google Scholar 

  20. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).

    Article  ADS  CAS  Google Scholar 

  21. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).

    Article  ADS  CAS  Google Scholar 

  22. L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and W.B. Zhang, J. Appl. Phys. 99, 064305 (2006).

    Article  ADS  CAS  Google Scholar 

  23. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics (Berlin: Springer, 2001).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the National Basic Research Program of China (Grant No. 2007CB607501), National Science Foundation of China (Grant No. 50731006), and the 111 Project of China (Grant No. B07040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, D., Tang, X., Li, H. et al. Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3 . J. Electron. Mater. 39, 1159–1165 (2010). https://doi.org/10.1007/s11664-010-1288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1288-z

Keywords

Navigation