Skip to main content
Log in

A First-Principles Study of the Role of Na Vacancies in the Thermoelectricity of Na x CoO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 26 March 2011

Abstract

First principles calculations using the generalized gradient approximation to density functional theory have been carried out to evaluate formation energies of defects and the resultant changes in electronic structure of NaCoO2 and Na0.5CoO2. The calculated formation energies confirm that Na vacancies form readily in this material, particularly through volatilization at elevated temperatures, consistent with experimentally observed behavior. Numerical analysis of the change in charge distribution upon Na vacancy formation shows that the vacancy plays a crucial role in modifying the electronic properties of the material. In these p-type thermoelectric materials, Na vacancies act as a reservoir for the minority carrier (electrons), removing them from the CoO2 layer while simultaneously increasing the concentration of majority carriers (holes) available for conduction in the CoO2 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  2. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).

    Article  CAS  Google Scholar 

  3. M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal, R.J. Cava, and N.P. Ong, Nat. Mater. 5, 537 (2006).

    Article  CAS  Google Scholar 

  4. D.J. Singh, Phys. Rev. B 61, 13397 (2000).

    Article  CAS  Google Scholar 

  5. K.-W. Lee, J. Kuneš, and W.E. Pickett, Phys. Rev. B 70, 045014 (2004).

    Google Scholar 

  6. K.-W. Lee, J. Kuneš, P. Novak, and W.E. Pickett, Phys. Rev. Lett. 94, 026403 (2005).

    Article  Google Scholar 

  7. P. Zhang, W. Luo, V.H. Crespi, M.L. Cohen, and S.G. Louie, Phys. Rev. B 70, 085108 (2004).

    Article  Google Scholar 

  8. H. Okabe, M. Matoba, T. Kyomen, and M. Itoh, J. Appl. Phys. 95, 6831 (2004).

    Article  CAS  Google Scholar 

  9. K.-W. Lee and W.E. Pickett, Phys. Rev. Lett. 96, 096403 (2006).

    Article  Google Scholar 

  10. P. Zhang, R.B. Capaz, M.K. Cohen, and S.G. Louie, Phys. Rev. B 71, 153102 (2005).

    Article  Google Scholar 

  11. Z. Li, J. Yang, J.G. Hou, and Q. Zhu, Phys. Rev. B 71, 024502 (2005).

    Article  Google Scholar 

  12. Y.S. Meng, A. Van der Ven, M.K.Y. Chan, and G. Ceder, Phys. Rev. B 72, 172103 (2005).

    Article  Google Scholar 

  13. Y.S. Meng, Y. Hinuma, and G. Ceder, J. Chem. Phys. 128, 104708 (2008).

    Article  Google Scholar 

  14. Y. Hinuma, Y.S. Meng, and G. Ceder, Phys. Rev. B 77, 224111 (2008).

    Article  Google Scholar 

  15. T. Motohashi, R. Ueda, T. Tojo, I. Terasaki, T. Atake, M. Karppinen, and H. Yamauhci, Phys. Rev. B 67, 064406 (2003).

    Article  Google Scholar 

  16. S.P. Bayrakci, I. Mirebeau, P. Bourges, Y. Sidis, M. Enderle, J. Mesot, D.P. Chen, C.T. Lin, and B. Keimer, Phys. Rev. Lett. 94, 157205 (2005).

    Article  CAS  Google Scholar 

  17. T.F. Schulze, P.S. Häflinger, Ch. Niedermayer, K. Mattenberger, S. Bubenhofer, and B. Batlogg, Phys. Rev. Lett. 100, 026407 (2008).

    Article  CAS  Google Scholar 

  18. M. Weller, A. Sacchetti, H.R. Ott, K. Mattenberger, and B. Batlogg, Phys. Rev. Lett. 102, 056401 (2009).

    Article  CAS  Google Scholar 

  19. D. Igarashi, Y. Miyazaki, and T. Kajitani, Phys. Rev. B 78, 184112 (2008).

    Article  Google Scholar 

  20. M. Yokoi, T. Moyoshi, Y. Kobayashi, M. Soda, Y. Yasui, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 74, 3046 (2005).

    Article  CAS  Google Scholar 

  21. F.C. Chou, J.H. Hou, and Y.S. Lee, Phys. Rev. B 70, 144526 (2004).

    Article  Google Scholar 

  22. J.L. Gavilano, D. Rau, B. Pedrini, K. Magishi, M. Weller, J. Hinderer, H.R. Ott, S.M. Kazakov, and J. Karpinski, Physica B 359–361, 1237 (2005).

    Article  Google Scholar 

  23. Q. Huang, M.L. Hoo, J.W. Lynn, H.W. Zandbergen, G. Lawes, Y. Wang, B.H. Toby, A.P. Ramirez, N.P. Ong, and R.J. Cava, J. Phys.: Condens. Matter 16, 5803 (2004).

    Article  CAS  Google Scholar 

  24. Y. Takahashi, Y. Gotoh, and J. Akimoto, J. Solid State Chem. 172, 22 (2003).

    Article  CAS  Google Scholar 

  25. M. Tada, M. Yoshiya, T. Nagira, and H. Yasuda (in preparation)

  26. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  27. I.V. Solovyev, P.H. Dederichs, and V.I. Anisimov, Phys. Rev. B 50, 16861 (1994).

    Article  CAS  Google Scholar 

  28. A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  CAS  Google Scholar 

  29. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  30. S.B. Zhang and J.E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).

    Article  CAS  Google Scholar 

  31. C.G. Van de Walle and R.M. Martin, Phys. Rev. B 35, 8154 (1987).

    Article  Google Scholar 

  32. S. Pöykkö, M.J. Puska, and R.M. Nieminen, Phys. Rev. B 53, 3813 (1996).

    Article  Google Scholar 

  33. T. Mattila and A. Zunger, Phys. Rev. B 58, 1367 (1998).

    Article  CAS  Google Scholar 

  34. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  35. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  36. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  38. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  39. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  40. C. Fouassier, G. Matejka, J.-M. Reau, and P. Hagenmuller, J. Solid State Chem. 6, 532 (1973).

    Article  CAS  Google Scholar 

  41. V.M. Jansen and R. Hoppe, Z. Anorg. Allg. Chem. 408, 104 (1974).

    Article  CAS  Google Scholar 

  42. Y. Wang and J. Ni, Phys. Rev. B 76, 094101 (2007).

    Article  Google Scholar 

  43. Q. Huang, M.L. Foo, R.A. Pascal Jr., J.W. Lynn, B.H. Toby, T. He, H.W. Zandbergen, and R.J. Cava, Phys. Rev. B 70, 184110 (2004).

    Article  Google Scholar 

  44. A.J. Williams, J.P. Attfield, M.L. Foo, L. Viciu, and R.J. Cava, Phys. Rev. B 73, 134401 (2006).

    Article  Google Scholar 

  45. M. Onoda and T. Ikeda, J. Phys.: Condens. Matter 19, 18623 (2007).

    Google Scholar 

  46. N.L. Wang, D. Wu, G. Li, X.H. Chen, C.H. Wang, and X.G. Lou, Phys. Rev. Lett. 93, 147403 (2004).

    Article  CAS  Google Scholar 

  47. M.L. Foo, Y. Wang, S. Watauchi, H.W. Zandbergen, T. He, R.J. Cava, and N.P. Ong, Phys. Rev. Lett. 92, 247001 (2004).

    Article  Google Scholar 

  48. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).

    Article  CAS  Google Scholar 

  49. D.R. Stull and H. Prophet, 44 Thermochemical Tables, 2nd ed. (Washington, DC: U.S. National Bureau of Standards, 1971).

    Google Scholar 

  50. C. Delmas, J.-J. Braconnier, C. Fouassier, and P. Hagenmuller, Solid State Ionics 3–4, 165 (1981).

    Article  Google Scholar 

  51. F.C. Chou, E.T. Abel, J.H. Cho, and Y.S. Lee, J. Phys. Chem. Solids 66, 155 (2005).

    Article  CAS  Google Scholar 

  52. J. Molenda, C. Delmas, P. Dordor, and A. Stokłosa, Solid State Ionics 12, 473 (1989).

    Article  Google Scholar 

  53. M. Roger, D.J.P. Morris, D.A. Tennant, M.J. Gutmann, J.P. Goff, J.-U. Hoffmann, R. Feyerherm, E. Dudzik, D. Prabhakaran, A.T. Boothoroyd, N. Shannon, B. Lake, and P.P. Deen, Nature 445, 631 (2007).

    Article  CAS  Google Scholar 

  54. C.B. Alcock, V.P. Itkin, and M.K. Horrigan, Can. Metall. Q. 23, 309 (1984).

    CAS  Google Scholar 

  55. G.J. Shu and F.C. Chou, Phys. Rev. B 78, 052101 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by a Grant- in-Aid for Scientific Research by the Ministry of Education, Science, Sports and Culture. The authors thank Dr T. Nagira for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Yoshiya.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11664-011-1628-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshiya, M., Okabayashi, T., Tada, M. et al. A First-Principles Study of the Role of Na Vacancies in the Thermoelectricity of Na x CoO2 . J. Electron. Mater. 39, 1681–1686 (2010). https://doi.org/10.1007/s11664-010-1237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1237-x

Key words

Navigation