Skip to main content

Advertisement

Log in

First-principles investigations of structural, optoelectronic and thermoelectric properties of Cu-based chalcogenides compounds

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural, electronic, optical and thermoelectric properties of copper-based ternary chalcogenides ACuSe2 (A = Sc, Y and La) were investigated within the framework of the density functional theory (DFT). The electronic band structures and density of states exhibit that ScCuSe2 and YCuSe2 have the indirect band gaps, while LaCuSe2 displays a direct band gap-type transition. The band structure calculations agree well with other results in the literature. The optical behavior of the studied materials was analyzed in terms of dielectric functions, refractive index, extinction coefficient, absorption coefficient, optical conductivity, reflectivity and energy loss factor. The refractive indices increase to the maximum values of 4.4, 4 and 4.1 at the short infrared and visible wavelengths for ScCuSe2, YCuSe2 and LaCuSe2, respectively. Then, they decrease to get a value below 1.0 at the UV wavelengths. Moreover, the material response with temperature was investigated by Seebeck coefficient, figure of merit, specific heat capacity, power factor, thermal conductivity and susceptibility. The high Seebeck effect and large power factor values confirm the efficiency of these materials in thermoelectric energy converter technology. Among the three studied ternary materials, YCuSe2 has the highest value of dimensionless figure of merit of 0.45 at room temperature. These results would probably provide a new route to the experimentalists for the potential usage and applications of ScCuSe2, YCuSe2 and LaCuSe2 in thermoelectric and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Reaver NGF, Khare SV (2014) Imminence of peak in US coal production and overestimation of reserves. Int J Coal Geol 131:90–105. https://doi.org/10.1016/j.coal.2014.05.013

    Article  CAS  Google Scholar 

  2. Biswas KA (2015) Advances in thermoelectric materials and devices for energy harnessing and utilization. Proc Indian Natn Sci Acad 81:903–913

    Google Scholar 

  3. Bonnet D, Meyers P (1998) Cadmium-telluride—Material for thin film solar cells. J Mater Res 13:2740–2753. https://doi.org/10.1557/JMR.1998.0376

    Article  CAS  Google Scholar 

  4. Başol BM, Kapur VK, Halani A, Leidholm C (1993) Copper indium diselenide thin film solar cells fabricated on flexible foil substrates. Sol Energ Mater Sol Cells 29:163–173. https://doi.org/10.1016/0927-0248(93)90074-D

    Article  Google Scholar 

  5. Meyer BK, Polity A, Reppin D et al (2012) Binary copper oxide semiconductors: from materials towards devices. Phys Status Solidi Basic Res 249:1487–1509. https://doi.org/10.1002/pssb.201248128

    Article  CAS  Google Scholar 

  6. Ruhle S, Anderson AY, Barad HN, Kupfer B, Bouhadana Y, Rosh-Hodesh E, Zaban A (2012) All-oxide photovoltaics. J Phys Chem Lett 3:3755–3764

    Article  CAS  Google Scholar 

  7. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945. https://doi.org/10.1557/JMR.2004.0252

    Article  CAS  Google Scholar 

  8. Wei J, Yang L, Ma Z et al (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0

    Article  CAS  Google Scholar 

  9. Guan M, Zhao K, Qiu P et al (2019) Enhanced thermoelectric performance of quaternary Cu 2–2 x Ag 2 x Se 1–x S x liquid-like chalcogenides. ACS Appl Mater Interfaces 11:13433–13440. https://doi.org/10.1021/acsami.9b01643

    Article  CAS  Google Scholar 

  10. Fillet R, Nicolas V, Fierro V, Celzard A (2021) A review of natural materials for solar evaporation. Sol Energ Mater Sol Cells 219:110814. https://doi.org/10.1016/j.solmat.2020.110814

    Article  CAS  Google Scholar 

  11. Doolin AJ, Charles RG, De Castro CSP et al (2021) Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells. Green Chem 23:2471–2486. https://doi.org/10.1039/d1gc00079a

    Article  CAS  Google Scholar 

  12. Dokouzis A, Bella F, Theodosiou K et al (2020) Photoelectrochromic devices with cobalt redox electrolytes. Mater Today Energ 15:100365. https://doi.org/10.1016/j.mtener.2019.100365

    Article  Google Scholar 

  13. Galliano S, Bella F, Bonomo M et al (2020) Hydrogel electrolytes based on xanthan gum: green route towards stable dye-sensitized solar cells. Nanomaterials 10:1–19. https://doi.org/10.3390/nano10081585

    Article  CAS  Google Scholar 

  14. Dughaish ZH (2002) Lead telluride as a thermoelectric material for thermoelectric power generation. Phys B Condens Matter 322:205–223. https://doi.org/10.1016/S0921-4526(02)01187-0

    Article  CAS  Google Scholar 

  15. Christensen M, Johnsen S, Iversen BB (2010) Thermoelectric clathrates of type I. Dalt Trans 39:978–992. https://doi.org/10.1039/b916400f

    Article  CAS  Google Scholar 

  16. Schäfer MC, Bobev S (2013) Tin clathrates with the type II structure. J Am Chem Soc 135:1696–1699. https://doi.org/10.1021/ja3112934

    Article  CAS  Google Scholar 

  17. Yin Y, Tudu B, Tiwari A (2017) Recent advances in oxide thermoelectric materials and modules. Vacuum 146:356–374. https://doi.org/10.1016/j.vacuum.2017.04.015

    Article  CAS  Google Scholar 

  18. Feng Z, Wu Z, Hua Y, Zhu G, Chen X,  Huang S (2021) Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors. J Mater Sci 56:14207–14221. https://doi.org/10.1007/s10853-021-06173-w

    Article  CAS  Google Scholar 

  19. Wang-yu X, Wang-juan H, Xiang B et al (2019) Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy. J Mater Sci 54:4788–4797. https://doi.org/10.1007/s10853-018-3172-9

    Article  CAS  Google Scholar 

  20. Mitchell K, Ibers JA (2002) Rare-earth transition-metal chalcogenides. Chem Rev 102:1929–1952. https://doi.org/10.1021/cr010319h

    Article  CAS  Google Scholar 

  21. Kim J, Hughbanks T (2000) Synthesis and structures of new ternary aluminum chalcogenides: LiAlSe2, α-LiAlTe2, and β-LiAlTe2. Inorg Chem 39:3092–3097. https://doi.org/10.1021/ic000210c

    Article  CAS  Google Scholar 

  22. Isaenko L, Yelisseyev A, Lobanov S et al (2003) Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst Res Technol 38:379–387. https://doi.org/10.1002/crat.200310047

    Article  CAS  Google Scholar 

  23. Isaenko L, Vasilyeva I, Merkulov A et al (2005) Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics. J Cryst Growth 275:217–223. https://doi.org/10.1016/j.jcrysgro.2004.10.089

    Article  CAS  Google Scholar 

  24. Kosobutsky AV, Basalaev YM (2010) First principles study of electronic structure and optical properties of LiMTe2 (M=Al, Ga, In) crystals. J Phys Chem Solids 71:854–861. https://doi.org/10.1016/j.jpcs.2010.03.033

    Article  CAS  Google Scholar 

  25. Andreev YM, Atuchin VV, Lanskii GV et al (2005) Linear optical properties of LiIn(S1-xSex)2 crystals and tuning of phase matching conditions. Solid State Sci 7:1188–1193. https://doi.org/10.1016/j.solidstatesciences.2005.05.005

    Article  CAS  Google Scholar 

  26. Atuchin VV, Kidyarov BI, Pervukhina NV (2006) Systematic and design of noncentrosymmetric sulfides and selenides for nonlinear optics. Comput Mater Sci 37:507–511. https://doi.org/10.1016/j.commatsci.2005.12.001

    Article  CAS  Google Scholar 

  27. Atuchin VV, Kesler VG, Ursaki VV, Tezlevan VE (2006) Electronic structure of HgGa2S4. Solid State Commun 138:250–254. https://doi.org/10.1016/j.ssc.2006.02.026

    Article  CAS  Google Scholar 

  28. Sachanyuk VP, Parasyuk OV, Fedorchuk AO et al (2007) The system Ag2Se-Ho2Se3 in the 0–50 mol.% Ho2Se3 range and the crystal structure of two polymorphic forms of AgHoSe2. Mater Res Bull 42:1091–1098. https://doi.org/10.1016/j.materresbull.2006.09.012

    Article  CAS  Google Scholar 

  29. Atuchin VV, Liang F, Grazhdannikov S et al (2018) Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe2. RSC Adv 8:9946–9955. https://doi.org/10.1039/c8ra01079j

    Article  CAS  Google Scholar 

  30. Khare IS, Szymanski NJ, Gall D, Irving RE (2020) Electronic, optical, and thermoelectric properties of sodium pnictogen chalcogenides: a first principles study. Comput Mater Sci 183:109818. https://doi.org/10.1016/j.commatsci.2020.109818

    Article  CAS  Google Scholar 

  31. Yang KJ, Son DH, Sung SJ et al (2016) A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J Mater Chem A 4:10151–10158. https://doi.org/10.1039/c6ta01558a

    Article  CAS  Google Scholar 

  32. Bi J, Ao J, Jeng MJ et al (2017) Three-step vapor Se/N2/vapor Se reaction of electrodeposited Cu/In/Ga precursor for preparing CuInGaSe2 thin films. Sol Energ Mater Sol Cells 159:352–361. https://doi.org/10.1016/j.solmat.2016.09.026

    Article  CAS  Google Scholar 

  33. Sengar BS, Garg V, Kumar A et al (2018) Band alignment of Cd-free (Zn, Mg)O layer with Cu2ZnSn(S, Se)4 and its effect on the photovoltaic properties. Opt Mater 84:748–756. https://doi.org/10.1016/j.optmat.2018.08.017

    Article  CAS  Google Scholar 

  34. Sengar BS, Garg V, Siddharth G, Kumar A, Pandey SK, Dubey M et al (2021) Improving the Cu2ZnSn(S, Se)4-based photovoltaic conversion efficiency by back-contact modification. IEEE Trans Electron Devices 68:2748–2752

    Article  CAS  Google Scholar 

  35. Sadewasser S, Salomé PMP, Rodriguez-Alvarez H (2017) Materials efficient deposition and heat management of CuInSe2 micro-concentrator solar cells. Sol Energ Mater Sol Cells 159:496–502. https://doi.org/10.1016/j.solmat.2016.09.041

    Article  CAS  Google Scholar 

  36. Heinemann MD, Ruske F, Greiner D et al (2016) Advantageous light management in Cu(In, Ga)Se2 superstrate solar cells. Sol Energ Mater Sol Cells 150:76–81. https://doi.org/10.1016/j.solmat.2016.02.005

    Article  CAS  Google Scholar 

  37. Cheng Y, Wei K, Xia P, Bai Q (2015) The structural and electronic properties of Cu(In1-xBx)Se2 as a new photovoltaic material. RSC Adv 5:85431–85435. https://doi.org/10.1039/c5ra13379c

    Article  CAS  Google Scholar 

  38. Cheng KW, Hinaro K, Antony MP (2016) Photoelectrochemical water splitting using Cu(In, Al)Se2 photoelectrodes developed via selenization of sputtered Cu-In-Al metal precursors. Sol Energ Mater Sol Cells 151:120–130. https://doi.org/10.1016/j.solmat.2016.03.006

    Article  CAS  Google Scholar 

  39. Barkhouse DAR, Gunawan O, Gokmen T et al (2015) Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog Photovolt Res Appl 20:6–11. https://doi.org/10.1002/pip

    Article  Google Scholar 

  40. Kavitha B, Dhanam M (2013) Structural, photoelectrical characterization of Cu(InAl)Se2 thin films and the fabrication of Cu(InAl)Se2 based solar cells. Electron Mater Lett 9:25–30. https://doi.org/10.1007/s13391-012-2118-7

    Article  CAS  Google Scholar 

  41. Kawano K, Hong BC, Sakamoto K et al (2009) Improvement of the conversion efficiency of solar cell by rare earth ion. Opt Mater 31:1353–1356. https://doi.org/10.1016/j.optmat.2008.10.012

    Article  CAS  Google Scholar 

  42. Lian H, Hou Z, Shang M et al (2013) Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 57:270–283. https://doi.org/10.1016/j.energy.2013.05.019

    Article  CAS  Google Scholar 

  43. Scanlon DO, Watson GW (2010) Stability, geometry, and electronic structure of an alternative I-III-VI2 material, CuScS2: a hybrid density functional theory analysis. Appl Phys Lett 97:2008–2011. https://doi.org/10.1063/1.3491179

    Article  CAS  Google Scholar 

  44. Brik MG (2013) First-principles calculations of the structural, electronic, optical and elastic properties of the CuYS2 semiconductor. J Phys Condens Matter 25:345802. https://doi.org/10.1088/0953-8984/25/34/345802

    Article  CAS  Google Scholar 

  45. Ijjaali I, Mitchell K, Ibers JA (2004) Preparation and structure of the light rare-earth copper selenides LnCuSe2 (Ln=La, Ce, Pr, Nd, Sm). J Solid State Chem 177:760–764. https://doi.org/10.1016/j.jssc.2003.09.007

    Article  CAS  Google Scholar 

  46. Li S, Ma R, Zhang X et al (2017) Copper yttrium selenide: a potential photovoltaic absorption material for solar cells. Mater Des 118:163–167. https://doi.org/10.1016/j.matdes.2017.01.037

    Article  CAS  Google Scholar 

  47. Rugut E, Joubert D, Jones G (2019) Lattice dynamics and thermoelectric properties of YCuSe2. Mater Today Commun 21:1–7. https://doi.org/10.1016/j.mtcomm.2019.100617

    Article  CAS  Google Scholar 

  48. Julien-Pouzol M, Guittard M (1972) Étude cristallochimique des combinaisons ternaries cuivre-terre rare soufre ou Sélénium, siyuées le long des binares Cu2X–L2X3. Ann Chim, 7: 253–262

  49. Hasnip PJ, Refson K, Probert MIJ et al (2014) Density functional theory in the solid state. Philos Trans R Soc A Math Phys Eng Sci 372:20130270. https://doi.org/10.1098/rsta.2013.0270

    Article  CAS  Google Scholar 

  50. Khyzhun OY, Bekenev VL, Atuchin VV et al (2013) Electronic properties of ZnWO4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data. Mater Chem Phys 140:588–595. https://doi.org/10.1016/j.matchemphys.2013.04.010

    Article  CAS  Google Scholar 

  51. Ji H, Huang Z, Xia Z et al (2015) Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalt Trans 44:7679–7686. https://doi.org/10.1039/c4dt03887h

    Article  CAS  Google Scholar 

  52. Reshak AH, Alahmed ZA, Bila J et al (2016) Exploration of the electronic structure of monoclinic α-Eu2(MoO4)3: DFT-based study and X-ray photoelectron spectroscopy. J Phys Chem C 120:10559–10568. https://doi.org/10.1021/acs.jpcc.6b01489

    Article  CAS  Google Scholar 

  53. Carella A, Centore R, Borbone F et al (2018) Tuning optical and electronic properties in novel carbazole photosensitizers for p-type dye-sensitized solar cells. Electrochim Acta 292:805–816. https://doi.org/10.1016/j.electacta.2018.09.204

    Article  CAS  Google Scholar 

  54. Atuchin VV, Vinnik DA, Gavrilova TA et al (2016) flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J Phys Chem C 120:5114–5123. https://doi.org/10.1021/acs.jpcc.5b12243

    Article  CAS  Google Scholar 

  55. Denisenko YG, Atuchin VV, Molokeev MS et al (2021) Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra. J Mater Sci Technol 76:111–121. https://doi.org/10.1016/j.jmst.2020.10.026

    Article  Google Scholar 

  56. Blaha, P, Schwarz, K, Madsen, GK, Kvasnicka, D, Luitz J (2001) An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties 60

  57. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. https://doi.org/10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  58. Camargo-Martínez JA, Baquero R (2012) Performance of the modified Becke-Johnson potential for semiconductors. Phys Rev B Condens Matter Mater Phys 86:1–8. https://doi.org/10.1103/PhysRevB.86.195106

    Article  CAS  Google Scholar 

  59. Baizaee SM, Mousavi N (2009) First-principles study of the electronic and optical properties of rutile TiO2. Phys B Condens Matter 404:2111–2116. https://doi.org/10.1016/j.physb.2009.01.014

    Article  CAS  Google Scholar 

  60. Madsen GKH, Carrete J, Verstraete MJ (2018) BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun 231:140–145. https://doi.org/10.1016/j.cpc.2018.05.010

    Article  CAS  Google Scholar 

  61. Shemet V, L. Gulay LO, (2005) Isothermal sections of the Y2Se3-Cu2Se-Sn (Pb) Se systems at 870 K and crystal structure of the Y4. 2Pb0.7Se7 compound. Pol J Chem 79:1315–1326

    CAS  Google Scholar 

  62. Julien-Pouzol M, Jaulmes S, Mazurier A, Guittard M (1981) Structure du disulfure de lanthane et de cuivre. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 37:1901–1903

    Article  Google Scholar 

  63. Mehl MJ, Klein BM, Papaconstantopoulos DA (1995) Intermetallic compounds: principle and practice. Principles 1:195–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merieme Benaadad.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaadad, M., Nafidi, A., Melkoud, S. et al. First-principles investigations of structural, optoelectronic and thermoelectric properties of Cu-based chalcogenides compounds. J Mater Sci 56, 15882–15897 (2021). https://doi.org/10.1007/s10853-021-06325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06325-y

Navigation