Skip to main content
Log in

Isotopic Superlattices for Perfect Phonon Reflection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Many efforts in material science have been made to hinder heat conductivity by phonons while maintaining reasonable electrical conductivity. Herein we present calculations for a completely novel technological approach that can be implemented in a wide range of thermoelectric materials, which leads to almost complete blockade of thermal conductivity due to phonon propagation but leaves the electrical conductivity unaltered. Suitable parameters for the fabrication of such metamaterials are presented, resulting in tremendously increased ZT-values for thermoelectric devices. In addition, feasibility studies for combinations with low-dimensional electronic materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook (London, UK: Taylor and Francis, 2005).

    Book  Google Scholar 

  2. E.E. Haller, J. Nucl. Sci. Technol. 39, 382 (2002).

    Article  CAS  Google Scholar 

  3. T. Ruf, R.W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.-J. Pohl, G.G. Devyatych, and P.G. Sennikov, Solid State Commun. 127, 257 (2003).

    Article  CAS  ADS  Google Scholar 

  4. I.C. Kizilyalli, H. Safar, J. Herbsommer, S.J. Burden, and P.L. Gammel, IEEE Electron. Dev. Lett. 26, 404 (2005).

    Article  CAS  ADS  Google Scholar 

  5. R. Kashyap, Fiber Bragg Gratings (Burlington, MA: Academic, 1999).

    Google Scholar 

  6. P.K. Schelling, S.R. Phillpot, and P. Keblinski, Appl. Phys. Lett. 80, 2484 (2002).

    Article  CAS  ADS  Google Scholar 

  7. D.A. Broido and T.L. Reinecke, Phys. Rev. B 70, 081310(R) (2004).

    Article  ADS  Google Scholar 

  8. Y.S. Ju and K.E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).

    Article  CAS  ADS  Google Scholar 

  9. G. Chen, A. Narayanaswamy, and C. Dames, Superlatt. Microstruct. 35, 161 (2003).

    Article  ADS  Google Scholar 

  10. E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E.E. Haller, and H. Schmidt, Appl. Phys. Lett. 93, 162104 (2008).

    Article  ADS  Google Scholar 

  11. Y. Shimizu, M. Uematsu, K.M. Itoh, A. Takano, K. Sawano, and Y. Shiraki, Appl. Phys. Exp. 1, 021401 (2008).

    Article  ADS  Google Scholar 

  12. A. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  13. N. Yang, G. Zhang, and B. Li, Nano Lett. 8, 276 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastian, G., Vogelsang, A. & Schiffmann, C. Isotopic Superlattices for Perfect Phonon Reflection. J. Electron. Mater. 39, 1769–1771 (2010). https://doi.org/10.1007/s11664-010-1160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1160-1

Keywords

Navigation