Skip to main content

Advertisement

Log in

Geometry-modulated metamaterials for enhanced thermoelectric effects and decreased thermal conduction

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Geometry-modulated nanowaveguides were proposed 10 years ago for enhanced thermoelectric effects and controlled heat conduction at the nanoscale. This class of metamaterials is now considered promising for breakthrough in energy-related applications as well as for novel devices for next-generation nanotechnologies. In the quantum confinement regime, their operation lies on modification of electron and phonon energy states by quantum interference between waves scattered at geometrical discontinuities. Above the quantum confinement regime, scattering effects dominate transport. Research is currently focusing on understanding and modelling geometry-modulation effects on phonon transport. Here, we provide physics evidence to support that a new property, the transmissivity can serve as metric for effects of geometry-modulation on scattering as the transmission coefficient is a metric for effects of geometry-modulation on carriers’ energy states. Significant enhancement of the thermoelectric figure of merit is predicted when the electron mean free path is smaller than geometry-modulation characteristic dimensions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Kshetrimayum, IEEE Potentials 23, 44 (2004)

    Article  Google Scholar 

  2. J. Linde, Ann. Phys. 78, 439 (1925)

    Google Scholar 

  3. J. Bradley, Proc. R. Soc. A. 136, 210 (1932)

    CAS  Google Scholar 

  4. H. Bethe, Proc. R. Soc. A. 150, 552 (1935)

    CAS  Google Scholar 

  5. R. Tsu, L. Esaki, IBM J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  6. R. Dingle, W. Wiegmann, C.H. Henry, Phys. Rev. Lett. 33, 827 (1974)

    Article  CAS  Google Scholar 

  7. C. Colvard, R. Merlin, M.V. Klein, A.C. Gossard, Phys. Rev. Lett. 43, 298 (1980)

    Article  Google Scholar 

  8. B. Jusserand, D. Paquet, A. Regreny, Phys. Rev. B 30, 6245 (1984)

    Article  CAS  Google Scholar 

  9. A.K. Sood, J. Menendez, M. Cardona, K. Ploog, Phys. Rev. Lett. 54, 211 (1985)

    Google Scholar 

  10. F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54, 350 (1989)

    Article  Google Scholar 

  11. A. Weisshaar, J. Lary, S.M. Goodnick, V.K. Tripathi, Appl. Phys. Lett. 55, 2114 (1989)

    Article  Google Scholar 

  12. X.F. Wang, M.S. Kushwaha, P. Vasilopoulos, Phys. Rev. B 65, 035107 (2001)

    Article  CAS  Google Scholar 

  13. W.-X. Li, K.-Q. Chen, W. Duan, J. Wu, B.-L. Gu, J. Phys.: Condens. Matter 16, 5049 (2004)

    CAS  Google Scholar 

  14. X. Zianni, Appl. Phys. Lett. 97, 233106 (2010)

    Article  CAS  Google Scholar 

  15. X. Zianni, Thermoelectric properties of waveguides, in Proceedings of the 7th European Conference of Thermolectrics (2010)

  16. X. Zianni, J. Solid State Chem. 193, 53 (2012)

    Article  CAS  Google Scholar 

  17. X. Zianni, Microelectron. Eng. 112, 235 (2013)

    Article  CAS  Google Scholar 

  18. X. Zianni, P. Chantrenne, J. Electron. Mater. 42, 1509 (2013)

    Article  CAS  Google Scholar 

  19. P.N. Butcher, N.H. March, M.P. Tosi (eds.), Physics of Low-Dimensional Semiconductor Structures (Plenum Press, New York, 1993)

    Google Scholar 

  20. M.J. Kelly, Low-Dimensional Semiconductors: Materials, Physics, Technology, Devices (Clarendon Press, Oxford, 1995)

    Google Scholar 

  21. J.H. Davies, The Physics of Low-Dimensional Semiconductors—An Introduction (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  22. S.Y. Mensah, G.K. Kangah, J. Phys.: Condens. Matter 4, 919 (1992)

    Google Scholar 

  23. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  CAS  Google Scholar 

  24. X. Zianni, V. Jean, K. Termentzidis, D. Lacroix, Nanotechnology 25, 65402 (2014)

    Article  CAS  Google Scholar 

  25. X. Zianni, Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100176

    Article  Google Scholar 

  26. J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Nano Lett. 13, 6281 (2013)

    Article  CAS  Google Scholar 

  27. J.D. Christesen, C.W. Pinion, D.J. Hill, S. Kim, J.F. Cahoon, J. Phys. Chem. Lett. 7, 685 (2016)

    Article  CAS  Google Scholar 

  28. W. Park, G. Romano, E.C. Ahn, T. Kodama, J. Park, M.T. Barako, J. Sohn, S.J. Kim, J. Cho, A.M. Marconnet, M. Asheghi, A.M. Kolpak, K.E. Goodson, Appl. Phys. Lett. 7, 6233 (2017)

    Google Scholar 

  29. J. Maire, R. Anufriev, T. Hori, J. Shiomi, S. Volz, M. Nomura, Sci. Rep. 8, 4452 (2018)

    Article  CAS  Google Scholar 

  30. F.G. VanGessel, P.W. Chung, Int. J. Heat Mass Transf. 128, 807 (2019)

    Article  CAS  Google Scholar 

  31. G.D. Mahan, H.B. Lyon, J. Appl. Phys. 76, 1899 (1994)

    Article  CAS  Google Scholar 

  32. J.O. Sofo, G.D. Mahan, Appl. Phys. Lett. 65, 2690 (1994)

    Article  CAS  Google Scholar 

  33. Y.-H. Gao, H. Chen, N. Liu, R.-Z. Zhang, Results Phys. 11, 915 (2018)

    Article  Google Scholar 

  34. X. Zianni, K. Termentzidis, D. Lacroix, J. Phys.: Conf. Ser. 785, 012011 (2017)

    Google Scholar 

  35. X. Zianni, J. Electron. Mater. 45, 1779 (2016)

    Article  CAS  Google Scholar 

  36. X. Zianni, Microelectron. Eng. 159, 51 (2016)

    Article  CAS  Google Scholar 

  37. X. Zianni, Mater. Today Proc. 3, 840 (2016)

    Article  Google Scholar 

  38. X. Zianni, J. Phys. D 51, 114003 (2018)

    Article  CAS  Google Scholar 

  39. M. Cassinelli, A. Romanenko, H. Reith, F. Volklein, W. Sigle, C. Trautmann, M.E. Toimil-Molares, Phys. Status Solidi A 213, 603–609 (2016)

    Article  CAS  Google Scholar 

  40. W. Thongkham, C. Lertsatitthanakorn, K. Jiramitmongkon, K. Tantisantisom, T. Boonkoom, M. Jitpukdee, K. Sinthiptharakoon, A. Klamchuen, M. Liangruksa, P. Khanchaitit, Appl. Mater. Interfaces 11, 6624 (2019)

    Article  CAS  Google Scholar 

  41. G. Gadea Díez, J.M. Sojo Gordillo, M. Pacios Pujado, M. Salleras, L. Fonseca, A. Morata, A. Tarancon Rubio, Nano Energy 67, 104191 (2020)

    Article  CAS  Google Scholar 

  42. L. Fonseca, I. Donmez-Noyan, M. Dolcet, D. Estrada-Wiese, J. Santander, M. Salleras, G. Gadea, M. Pacios, J. Sojo, A. Morata, A. Tarancon, Nanomaterials 11, 517 (2021)

    Article  CAS  Google Scholar 

  43. S. Elyamny, E. Dimaggio, S. Magagna, D. Narducci, G. Pennelli, Nano Lett. 20, 4748 (2020)

    Article  CAS  Google Scholar 

  44. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xanthippi Zianni.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zianni, X. Geometry-modulated metamaterials for enhanced thermoelectric effects and decreased thermal conduction. MRS Advances 6, 707–712 (2021). https://doi.org/10.1557/s43580-021-00106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00106-0

Navigation