Skip to main content

Ba x Pd4Sn y Sb12−y : A New Palladium-Containing Skutterudite

A new compound with the filled-skutterudite structure, Ba x Pd4Sn y Sb12−y , was prepared by the flux growth and spark plasma sintering (SPS) techniques. The crystal structure was determined from single crystal and powder x-ray diffraction data. The structure is electronically stabilized by the Sn:Sb ratio, and the lattice parameters depend on this ratio. For magnetic, electrical conductivity, Hall coefficient, Seebeck coefficient and thermal conductivity measurements, single crystal and/or SPS-densified specimens were utilized. Ba1.0Pd4Sn7.1Sb5.2 exhibits diamagnetic behavior. The Hall coefficient is negative and increases with temperature. The lattice thermal conductivity of Ba0.97Pd4Sn6.90Sb4.97 (SPS-densified) is smaller than for CoSb3, but the thermoelectric figure of merit (ZT) is comparatively low due to the low Seebeck coefficient.

References

  1. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1994).

    Article  ADS  Google Scholar 

  2. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    CAS  Article  ADS  PubMed  Google Scholar 

  3. B. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat, and A. Borshchevsky, Phys. Rev. B: Condens. Matter Mater. Phys. 55, 1476 (1997).

    CAS  ADS  Google Scholar 

  4. E. Bauer, A. Galatanu, H. Michor, G. Hilscher, P. Rogl, P. Boulet, and H. Noël, Eur. Phys. J. B. 14, 483 (2000).

    CAS  Article  ADS  Google Scholar 

  5. N.R. Dilley, E.D. Bauer, M.B. Maple, S. Dordevic, D.N. Basov, F. Freibert, T.W. Darling, A. Migliori, B.C. Chakoumakos, and B.C. Sales, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 4608 (2000).

    CAS  ADS  Google Scholar 

  6. N.R. Dilley, E.D. Bauer, M.B. Maple, and B.C. Sales, J. Appl. Phys. 88, 1948 (2000).

    CAS  Article  ADS  Google Scholar 

  7. J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, and C. Uher, Phys. Rev. B: Condens. Matter Mater. Phys. 67, 165207 (2000).

    ADS  Google Scholar 

  8. A. Grytsiv, P. Rogl, St. Berger, Ch. Paul, H. Michor, E. Bauer, G. Hilscher, C. Godart, P. Knoll, M. Musso, W. Lottermoser, A. Saccone, R. Ferro, T. Roisnel, and H. Noel, J. Phys.: Condens. Matter 14, 7071 (2002).

    CAS  Article  ADS  Google Scholar 

  9. Y. Liang, H. Borrmann, M. Baenitz, W. Schnelle, S. Budnyk, J.T. Zhao, and Y. Grin, Inorg. Chem. 47, 9489 (2008).

    CAS  Article  PubMed  Google Scholar 

  10. K. Matsubara, T. Iyanaga, T. Tsubouchi, K. Kishimoto, and T. Koyanagi, Proceedings of the 13th International Conference on Thermoelectrics, AIP Conf. Proc. no. 316 (New York: AIP, 1995), pp. 226–229.

  11. Y.Z. Pei, L.D. Chen, S.Q. Bai, X.Y. Zhao, and X.Y. Li, Scr. Mater. 56, 621 (2007).

    CAS  Article  Google Scholar 

  12. Z. Fisk and J.P. Remeika, Handbook on the Physics and Chemistry of the Rare Earths, Vol. 12, ed. K.A. Gschneider and L.R. Eyring (Amsterdam: North-Holland, 1989), pp. 53–70.

    Google Scholar 

  13. M. Boström and S. Hovmöller, J. Alloys Compd. 314, 154 (2001).

    Article  Google Scholar 

  14. Yu. Grin, N. Reinfried, C.P. Sebastian, P. Höhn, S. Budnyk, A. Leithe-Jasper, C. Recknagel, Y. Liang, G. Friedemann, and M. Tokita, 7th Pacific Rim Conference on Ceramics and Glass Technology, Book of Abstracts (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2007), p. 170.

  15. N. Reinfried, P. Höhn, and Yu. Grin, Scientific Report MPI CPfS (Dresden: Max-Planck-Institut füz Chemische Physik fester Stoffe, 2005), pp. 28–31.

  16. L.G. Akselrud, P.Y. Zavalii, Y.N. Grin, V.K. Pecharski, B. Baumgartner, and E. Woelfel, Mater. Sci. Forum 133–136, 335 (1993).

    Article  Google Scholar 

  17. G.M. Sheldrick, SHELXS-97. Program for the Automatic Solution of Crystal Structures (University of Göttingen, Germany 1997).

  18. D.J. Braun and W. Jeitschko, J. Less-Common Met. 72, 147 (1980).

    CAS  Article  Google Scholar 

  19. E. Van Aubel, W.J. De Haas, and J. Voogd, Commun. Kamerlingh Onnes Lab, Univ. Leiden 18, 193c (1930).

    Google Scholar 

  20. J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, and C. Uher, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 094115 (2002).

    ADS  Google Scholar 

  21. J. Yang, G.P. Meisner, D.T. Morelli, and C. Uher, Phys. Rev. B: Condens. Matter Mater. Phys. 63, 014410 (2000).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to A. Leithe-Jasper and Y. Lu for valuable discussions, and wish to thank T. Vogel for the metallographic preparations, M. Eckert for WDXS and EDXS measurement, R. Koban for measurement of magnetic and transport properties, S. Hoffmann for differential thermal analysis (DTA), and S. Hückmann for collecting the x-ray powder diffraction data.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Grin.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Liang, Y., Borrmann, H., Schnelle, W. et al. Ba x Pd4Sn y Sb12−y : A New Palladium-Containing Skutterudite. J. Electron. Mater. 39, 1837–1841 (2010). https://doi.org/10.1007/s11664-010-1074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1074-y

Key words

  • Filled skutterudite
  • crystal structure
  • magnetic susceptibility
  • Hall coefficient
  • electrical conductivity
  • Seebeck coefficient
  • thermal conductivity