Skip to main content
Log in

In-Filled La0.5Co4Sb12 Skutterudite System with High Thermoelectric Figure of Merit

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The contribution of In addition to the La0.5Co4Sb12 skutterudite structure to improve its thermoelectric properties has been demonstrated. In x La0.5Co4Sb12 (0 ≤ x ≤ 0.3) samples were prepared through mechanical alloying followed by spark plasma sintering. Characterization of the phase structure and morphology of the sintered In x La0.5Co4Sb12 bulk samples was carried out using x-ray diffraction (XRD) analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Rietveld analysis of the XRD spectra indicated that double filling at the 2a (000) interstitial site with La and In was successfully achieved, significantly improving the thermoelectric performance of the La0.5Co4Sb12 compound through simultaneous increase in the electrical conductivity and Seebeck coefficient. A maximum power factor of 3.39 × 10−3 W/ m-K2 was recorded at 644 K for the In0.3La0.5Co4Sb12 sample, more than 96% of that of the La0.5Co4Sb12 sample. Double filling also effectively reduced the lattice thermal conductivity by about 46%, thus demonstrating that the overall improvement in ZT was primarily due to the reduced thermal conductivity. A maximum ZT value of 1.15 was achieved at 692 K for In0.3La0.5Co4Sb12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, Introduction to thermoelectricity (New York: Springer, 2009).

    Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. M.H. Elsheikh, M.F.M. Sabri, S.M. Said, Y. Miyazaki, H.H. Masjuki, D.A.A. Miyazaki, B.D. Shnawah, S.Naito Long, and M.B.A. Bashir, J. Electron. Mater. 45, 2886 (2016).

    Article  Google Scholar 

  4. M.B.A. Bashir, S.M. Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Renew. Sustain. Energy Rev. 37, 569 (2014).

    Article  Google Scholar 

  5. M.H. Elsheikh, M.F.M. Sabri, S.M. Said, Y. Miyazaki, H.H. Masjuki, D.A.A. Miyazaki, N. Shnawah, S.Naito Abdullah, and M.B.A. Bashir, Sci. Adv. Mater. 8, 2121 (2016).

    Article  Google Scholar 

  6. M.H. Elsheikh, M.F.M. Sabri, S.M. Said, Y. Miyazaki, H.H. Masjuki, D.A.A. Miyazaki, S.Naito Shnawah, and M.B.A. Bashir, J. Mater. Sci. 52, 5324 (2017).

    Article  Google Scholar 

  7. H.J. Goldsmid, Electronic refrigeration (London: Pion, 1986).

    Google Scholar 

  8. J.R. Salvador, R.A. Waldo, C.A. Wong, M. Tessema, D.N. Brown, D.J. Miller, H. Wang, A.A. Wereszczak, and W. Cai, Mater. Sci. Eng. B Adv. 178, 1087 (2013).

    Article  Google Scholar 

  9. L. Zhang, G. Rogl, A. Grytsiv, S. Puchegger, J. Koppensteiner, F. Spieckermann, H. Kabelka, M. Reinecker, P. Rogl, W. Schranz, M. Zehetbauer, and M.A. Carpenter, Mater. Sci. Eng. B Adv. 170, 26 (2010).

    Article  Google Scholar 

  10. T.-J. Zhu, Y.-Q. Cao, Q. Zhang, and X.-B. Zhao, J. Electron. Mater. 39, 1990 (2010).

    Article  Google Scholar 

  11. K.-H. Park, S. Lee, W.-S. Seo, S. Baek, D.-K. Shin, and I.-H. Kim, J. Korean Phys. Soc. 64, 1004 (2014).

    Article  Google Scholar 

  12. K. Liu, X. Dong, and Z. Jiuxing, Mater. Chem. Phys. 96, 371 (2006).

    Article  Google Scholar 

  13. S.Q. Bao, J.Y. Yang, W. Zhu, X. Fan, X.K. Duan, and J.Y. Peng, Mater. Lett. 60, 2029 (2006).

    Article  Google Scholar 

  14. P.-X. Lu, F. Wu, H.-L. Han, Q. Wang, Z.-G. Shen, and X. Hu, J. Alloys Compd. 505, 255 (2010).

    Article  Google Scholar 

  15. E. Visnow, C.P. Heinrich, A. Schmitz, J. de Boor, P. Leidich, B. Klobes, R.P. Hermann, W.E. Muller, and W. Tremel, Inorg. Chem. 54, 7818 (2015).

    Article  Google Scholar 

  16. G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, and P. Rogl, Acta Mater. 95, 201 (2015).

    Article  Google Scholar 

  17. T. He, J. Chen, H.D. Rosenfeld, and M. Subramanian, Chem. Mater. 18, 759 (2006).

    Article  Google Scholar 

  18. R.C. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and E. Muller, J. Electron. Mater. 38, 1337 (2009).

    Article  Google Scholar 

  19. L. Deng, X.P. Jia, T.C. Su, S.Z. Zheng, X. Guo, K. Jie, and H.A. Ma, Mater. Lett. 65, 2927 (2011).

    Article  Google Scholar 

  20. G.D. Tang, D.W. Zhang, G. Chen, F. Xu, and Z.H. Wang, Phys. B 408, 79 (2013).

    Article  Google Scholar 

  21. J.-K. Lee, S.-M. Choi, W.-S. Seo, Y.-S. Lim, H.-L. Lee, and I.-H. Kim, Renew. Energy 42, 36 (2012).

    Article  Google Scholar 

  22. J. Yu, W.-Y. Zhao, B. Lei, D.-G. Tang, and Q.-J. Zhang, J. Electron. Mater. 42, 1400 (2012).

    Article  Google Scholar 

  23. S.M. Said, M.B.A. Bashir, M.F.M. Sabri, Y. Miyazaki, D.A.A. Shnawah, A.S. Hakeem, M. Shimada, A.I. Bakare, N.N.N. Ghazali, and M.H. Elsheikh, Metall. Mater. Trans. A (2017). https://doi.org/10.1007/s11661-017-4058-1.

    Google Scholar 

  24. X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).

    Article  Google Scholar 

  25. S.-Y. Kim, S.-M. Choi, W.-S. Seo, Y.S. Lim, S. Lee, I.-H. Kim, and H.K. Cho, J. Nanomater. 2013, 11 (2013).

    Google Scholar 

  26. S. Ballikaya, G. Wang, K. Sun, and C. Uher, J. Electron. Mater. 40, 570 (2011).

    Article  Google Scholar 

  27. H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  28. R.C. Mallik, J.Y. Jung, S.C. Ur, and I.H. Kim, Met. Mater. Int. 14, 223 (2008).

    Article  Google Scholar 

  29. M. Puyet, B. Lenoir, A. Dauscher, C. Candolfi, J. Hejtmanek, and M.E.C. Stiewe, Appl. Phys. Lett. 101, 222105 (2012).

    Article  Google Scholar 

  30. J. Peng, J. Yang, S. Bao, Y. Wang, and T. Zhang, Rare Met. Mater. Eng. 37, 2177 (2008).

    Article  Google Scholar 

  31. X.L. Song, J.Y. Yang, J.Y. Peng, Y.H. Chen, W. Zhu, and T.J. Zhang, J. Alloys Compd. 399, 276 (2005).

    Article  Google Scholar 

  32. G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, J. Electron. Mater. 42, 1463 (2012).

    Article  Google Scholar 

  33. D.M. Rowe and C.M. Bhandari, Modern thermoelectrics (Upper Saddle River: Prentice Hall, 1983).

    Google Scholar 

  34. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  35. L. Wang, K.F. Cai, Y.Y. Wang, H. Li, and H.F. Wang, Appl. Phys. A Mater. 97, 841 (2009).

    Article  Google Scholar 

  36. R.C. Mallik, J.-Y. Jung, S.-C. Ur, and I.-H. Kim, Met. Mater. Int. 14, 223 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhana Mohd Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M.B.A., Said, S.M., Sabri, .F.M. et al. In-Filled La0.5Co4Sb12 Skutterudite System with High Thermoelectric Figure of Merit. J. Electron. Mater. 47, 2429–2438 (2018). https://doi.org/10.1007/s11664-018-6074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6074-3

Keywords

Navigation