Skip to main content
Log in

Thermal Conductivity Reduction in CoSb3–CeO2 Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

CoSb3 + x% CeO2 nanocomposites (x = 1, 3, 5) were synthesized by ball-milling and spark plasma sintering. Scanning electron microscopy showed that some CeO2 nano-inclusions sit at the boundaries of CoSb3 grains. These inclusions also reduce the sizes of the CoSb3 grains and crystallites by inhibiting their growth during sintering. Hall-effect measurements show that the CeO2 inclusions modify the charge-carrier concentration in CoSb3. The variations of the electrical resistivity for the 1% and 3% CeO2 samples can at least partially be attributed to these modifications of the carrier concentration. Nonetheless, the resistivity increase in the 5% CeO2 sample can unambiguously be ascribed to the presence of the CeO2 inclusions. Thermal conductivity is systematically reduced (by more than 15% at 300 K) upon CeO2 addition. Phonon diffusion by the increased number of CoSb3 grain boundaries is one of the mechanisms involved in this reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. R. Venkatasubramanian, E. Sivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. A. Borshchevsky, J.P. Fleurial, C.E. Allevato, and T. Caillat, 13th International Conference on Thermoelectrics, 30 Aug.–1 Sept. 1994, Vol. 316 (Kansas City, MO, USA: AIP- Conference-Proceedings, 1995), p. 3.

  4. D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J.W. Vandersande, B. Chen, and C. Uher, Phys. Rev. B 51, 9622 (1995).

    Article  CAS  ADS  Google Scholar 

  5. D. Mandrus, A. Migliori, T.W. Darling, M.F. Hundley, E.J. Peterson, and J.D. Thompson, Phys. Rev. B 52, 4926 (1995).

    Article  CAS  ADS  Google Scholar 

  6. H. Anno, K. Hatada, H. Shimizu, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, and K. Motoya, J. Appl. Phys. 83, 5270 (1998).

    Article  CAS  ADS  Google Scholar 

  7. C. Uher, 22nd International Conference on Thermoelectrics ICT2003, La Grand Motte, France, August, 2003, p. 42.

  8. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  ADS  Google Scholar 

  9. S. Katsuyama, T. Kanayama, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 88, 3484 (2000).

    Article  CAS  ADS  Google Scholar 

  10. S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehala, and M. Ito, J. Appl. Phys. 93, 2758 (2003).

    Article  CAS  ADS  Google Scholar 

  11. X. Shi, L. Chen, J. Yang, and G.P. Meisner, Appl. Phys. Lett. 84, 2301 (2004).

    Article  CAS  ADS  Google Scholar 

  12. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, and X.Y. Li, Appl. Phys. Lett. 89, 092121 (2006).

    Article  ADS  Google Scholar 

  13. Z.M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S.H. Li, M. Toprak, and M. Muhammed, J. Appl. Phys. 101, 043707 (2007).

    Article  ADS  Google Scholar 

  14. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).

    Article  CAS  ADS  Google Scholar 

  15. D. Bérardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Couturas for cutting the samples. This work was partially supported by the FP6 Network of Excellence “Complex Metallic Alloys.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Alleno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alleno, E., Chen, L., Chubilleau, C. et al. Thermal Conductivity Reduction in CoSb3–CeO2 Nanocomposites. J. Electron. Mater. 39, 1966–1970 (2010). https://doi.org/10.1007/s11664-009-1043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1043-5

Keywords

Navigation