Skip to main content
Log in

Effect of Nanostructuring and High-Pressure Torsion Process on Thermal Conductivity of Carrier-Doped Chalcopyrite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carrier-doped chalcopyrite (CuFeS2) has been shown to exhibit a high power factor exceeding 1 mW/K2-m at room temperature. However, it has a relatively high thermal conductivity of 6 W/K-m in this temperature range. To reduce the thermal conductivity, nanostructuring by a ball-milling process and the high-pressure torsion (HPT) method have been applied to Zn0.03Cu0.97FeS2. While ball milling yielded a fine powder specimen with crystal grain size of about 20 nm, a subsequent synthesis process using spark plasma sintering at 720 K for 2 min caused crystal grain regrowth. The thermal conductivity of the ball-milled and spark-plasma-sintered sample was similar to that of a bulk sample above room temperature. The HPT-treated sample showed a significant drop in thermal conductivity over the entire temperature range. However, the electrical resistivity increased, resulting in a degradation of the overall thermoelectric performance. Annealing at 520 K after HPT was partly effective in recovering the electrical conductivity while retaining low thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).

    Article  Google Scholar 

  2. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  3. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  4. X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).

    Article  Google Scholar 

  5. K. Suekuni, F.S. Kim, and T. Takabatake, J. Appl. Phys. 116, 063706 (2014).

    Article  Google Scholar 

  6. K. Suekuni, F.S. Kim, H. Nishiate, M. Ohta, H.I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).

    Article  Google Scholar 

  7. N. Tsujii, J. Electron. Mater. 42, 1974 (2013).

    Article  Google Scholar 

  8. N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).

    Article  Google Scholar 

  9. N. Tsujii, T. Mori, and Y. Isoda, J. Electron. Mater. 43, 2371 (2014).

    Article  Google Scholar 

  10. R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, and T. Mori, Angew. Chem. Int. Ed. 54, 12909 (2015).

  11. W. Liu, Z. Ren, and G. Chen, Thermoelectric Nanomaterials, ed. K. Koumoto and T. Mori (Springer, Heidelberg, 2013).

  12. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  13. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  14. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  15. G. Rogl, P. Rogl, E. Bauer, and M. Zebetbause, Thermoelectric Nanomaterials, ed. K. Koumoto and T. Mori (Springer, Berlin, 2013).

  16. F. Meng, K. Tsuchiya, S. Ii, and Y. Yokoyama, Appl. Phys. Lett. 101, 121914 (2012).

    Article  Google Scholar 

  17. D.N.A. Shri, K. Tsuchiya, and A. Yamamoto, Appl. Surf. Sci. 289, 338 (2014).

    Article  Google Scholar 

  18. N. Tsujii and T. Mori, J. Jpn. Soc. Powder Powder Metall. 61, 18 (2014).

    Google Scholar 

  19. A. Kosuga, K. Umekage, M. Matsuzawa, Y. Sakamoto, and I. Yamada, Inorg. Chem. 53, 6844 (2014).

    Article  Google Scholar 

  20. D.J. Vaughan and J.A. Tossell, Science 179, 375 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research 24550168 and 15K05190, from the Japan Society for the Promotion of Science (JSPS). N.T. thanks Namiko Onodera for help with sample synthesis and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohito Tsujii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujii, N., Meng, F., Tsuchiya, K. et al. Effect of Nanostructuring and High-Pressure Torsion Process on Thermal Conductivity of Carrier-Doped Chalcopyrite. J. Electron. Mater. 45, 1642–1647 (2016). https://doi.org/10.1007/s11664-015-4147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4147-0

Keywords

Navigation