Skip to main content
Log in

A Study of the Shear Response of a Lead-Free Composite Solder by Experimental and Homogenization Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The current study proposes a combined experimental and modeling approach to characterize the mechanical response of composite lead-free solders. The influence of the reinforcement volume fraction on the shear response of the solder material in the joint is assessed. A novel optimized geometry for single lap shear specimens is proposed. This design minimizes the effect of plastic strain localization, leading to a significant improvement of the quality of experimental data. The constitutive model of the solder material is numerically identified from the load–displacement response of the joint by using inverse finite element identification. Experimental results for a composite solder with 0.13 reinforcement volume fraction indicate that the presence of the reinforcement leads to a 23% increase of the ultimate stress and a 50% decrease of the ultimate strain. To interpret experimental data and predict the elastoplastic response of the composite solder for varying particle volume fraction, a three-dimensional (3D) homogenization model is employed. The agreement between experiments and homogenization results leads to the conclusion that the increase in the ultimate strength and the decrease in ductility are to be attributed to load sharing between matrix material and particles with the development of a significant triaxial stress state which restricts plastic flow in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. Rep. 27, 95 (2000).

    Article  Google Scholar 

  2. K.N. Subramanian, A. Lee, S. Choi, and P. Sonje, J. Electron. Mater. 30, 372 (2001).

    Article  ADS  CAS  Google Scholar 

  3. K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 1335 (2003).

    Article  ADS  CAS  Google Scholar 

  4. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).

    Article  CAS  Google Scholar 

  5. F. Guo, J. Mater. Sci. Mater. Electron. 18, 129 (2007).

    Article  CAS  Google Scholar 

  6. J.S. Lee, K.M. Chu, D.Y. Jeon, R. Patzelt, D. Manessis, and A. Ostmann, Proceedings of the 56th Electronic Components and Technology Conference (IEEE, 2006), pp. 244–249.

  7. K. Mohankumar and A.A.O. Tay, Proceedings of 6th Electronics Packaging Technology Conference (IEEE, 2004), pp. 455–461.

  8. J.P. Liu, F. Guo, Y.F. Yan, W.B. Wang, and Y.W. Shi, J.␣Electron. Mater. 33, 958 (2004).

    Article  ADS  CAS  Google Scholar 

  9. D.C. Lin, C.Y. Kuo, T.S. Srivatsan, and G.X. Wang, Proceedings of the ASME Heat Transfer Division, vol. 3, Heat Transfer Equipment, Heat Transfer in Manufacturing and Materials Processing (2003), pp. 253–258.

  10. Y. Shi, J. Liu, Y. Yan, Z. Xia, Y. Lei, F. Guo, and X. Li, J.␣Mater. Sci. Mater. Electron. 37, 507 (2008).

    ADS  CAS  Google Scholar 

  11. K.N. Tu, Solder Joint Technology (Springer, 2007).

  12. Y.L. Shen, N. Chawla, E.S. Ege, and X. Deng, Acta Mater. 53, 2633 (2005).

    Article  CAS  Google Scholar 

  13. J. Cugnoni, J. Botsis, V. Sivasubramaniam, and J. Janczak-Rusch, Fatigue Fract. Eng. Mater. Struct. 30, 387 (2007).

    Article  CAS  Google Scholar 

  14. J. Cugnoni, J. Botsis, and J. Janczak-Rusch, Adv. Eng. Mater. 8, 184 (2006).

    Article  CAS  Google Scholar 

  15. Y. Kim, K. Kim, C. Hwang, and K. Suganuma, J. Alloys Compd. 352, 237 (2003).

    Article  CAS  Google Scholar 

  16. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J.␣Electron. Mater. 32, 1403 (2003).

    Article  ADS  CAS  Google Scholar 

  17. M. Galli, J. Botsis, and J. Janczak-Rusch, Comput. Mater. Sci. 41, 312 (2008).

    Article  Google Scholar 

  18. J.G. Lee, F. Guo, K.N. Subramanian, and J.P. Lucas, Solder. Surf. Mt. Technol. 14, 11 (2002).

    Article  Google Scholar 

  19. V. Sivasubramaniam, N.S. Bosco, J. Janczak-Rusch, J.␣Cugnoni, and J. Botsis, J. Electron. Mater. 37, 1598 (2008).

    Article  ADS  CAS  Google Scholar 

  20. H.S. Liu, J. Wang, and Z.P. Jin, Calphad 28, 363 (2004).

    Article  CAS  Google Scholar 

  21. F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, J. Electron. Mater. 30, 1073 (2001).

    Article  ADS  CAS  Google Scholar 

  22. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J.␣Electron. Mater. 28, 1209 (1999).

    Article  ADS  CAS  Google Scholar 

  23. H.D. Espinosa and P.D. Zavattieri, Mech. Mater. 35, 333 (2003).

    Article  Google Scholar 

  24. N. Chawla, X. Deng, and D.R.M. Schnell, Mater. Sci. Eng. A 426, 314 (2006).

    Article  Google Scholar 

  25. A. Borbely, H. Biermann, and O. Hartmann, Mater. Sci. Eng. A 313, 34 (2001).

    Article  Google Scholar 

  26. T. Iung and M. Grange, Mater. Sci. Eng. A 201, L8 (1995).

    Article  CAS  Google Scholar 

  27. H.J. Böhm and W. Han, Model Simul. Mater. Sci. Eng. 9, 47 (2001).

    Article  ADS  Google Scholar 

  28. http://www.matweb.com.

  29. NIST: http://www.metallurgy.nist.gov/mechanical_properties/roomtemp_properties.jpg.

  30. ABAQUS 6.5 Analysis User’s Manual.

  31. N. Ramakrishnan, Acta Mater. 44, 69 (1996).

    Article  ADS  CAS  Google Scholar 

  32. M. Kouzeli and A. Mortensen, Acta Mater. 50, 39 (2002).

    Article  CAS  Google Scholar 

  33. X.L. Zhong and M. Gupta, Adv. Eng. Mater. 7, 1049 (2005).

    Article  Google Scholar 

  34. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  35. K. Mohankumar, V. Kripesh, and A.A.O. Tay, Proc. Electron. Comp. Technol. Conf., vol. 56, issue 30 (IEEE, 2006), pp. 237–243.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sivasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivasubramaniam, V., Galli, M., Cugnoni, J. et al. A Study of the Shear Response of a Lead-Free Composite Solder by Experimental and Homogenization Techniques. J. Electron. Mater. 38, 2122–2131 (2009). https://doi.org/10.1007/s11664-009-0878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0878-0

Keywords

Navigation