Skip to main content
Log in

Thermodynamic Assessment of the Au-Co-Sn Ternary System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Phase relationships in the Au-Co-Sn ternary system have been thermodynamically assessed by using the CALPHAD technique. The existing thermodynamic descriptions of the binary Au-Sn and Co-Sn systems were improved by incorporating the ab initio calculated enthalpies of formation of the intermetallic compounds including AuSn, CoSn, AuSn2, and AuSn4. For consistency, the Au-Co system was reassessed on the basis of the same pure element data as adopted for the Au-Sn and Co-Sn systems. With the combination of the three binary descriptions, the Au-Co-Sn ternary system was assessed by taking into account the ternary solubility in the binary compounds and the formation of a ternary compound. The obtained set of thermodynamic parameters can reproduce the measured phase equilibria at 380°C. The isothermal section at 396°C, the CoSn-Au and Au-SnCo vertical sections, and the liquidus projection were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Klein Wassink, Soldering in Electronics, 2nd ed. (Port Erin, Isle of Man: Electrochemical Publications, 1989).

    Google Scholar 

  2. K.N. Tu and K. Zeng, Mater. Sci. Eng. R. 34, 1 (2001).

    Article  Google Scholar 

  3. R.J. Fields, S.R. Low III, and G.K. Lucey, Metal Science of Joining, ed. M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (Warrendale, PA: TMS, 1992), p. 165.

    Google Scholar 

  4. S.F. Dirnfeld and J.J. Ramon, Weld. J. 69, 373 (1990).

    Google Scholar 

  5. C.Y. Liu, C. Chen, A.K. Mal, and K.N. Tu, J. Appl. Phys. 85, 3882 (1999).

    Article  ADS  CAS  Google Scholar 

  6. J. Kim, D. Kim, and C.C. Lee, IEEE Trans. Adv. Packag. 29, 473 (2006).

    Article  CAS  Google Scholar 

  7. J. Kim and C.C. Lee, Mater. Sci. Eng. A 417, 143 (2006).

    Article  CAS  Google Scholar 

  8. J.H. Kuang, M.T. Sheen, C.H. Chang, C.C. Chen, G.L. Wang, and W.H. Cheng, IEEE Trans. Adv. Packag. 24, 563 (2001).

    Article  CAS  Google Scholar 

  9. G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl, and E. Jäger, Microsyst. Technol. 7, 239 (2002).

    Article  Google Scholar 

  10. J.W.R. Tew, X.Q. Shi, and S. Yuan, Mater. Lett. 58, 2695 (2004).

    Article  CAS  Google Scholar 

  11. T. Yamamoto, S. Sakatani, S. Kobayashi, K.F. Keisuke, M. Ishio, and K. Shiomi, Mater. Trans. JIM 46, 2406 (2005).

    Article  CAS  Google Scholar 

  12. W.J. Zhu, H.S. Liu, J. Wang, and Z.P. Jin, J. Alloys Compd. 456, 113 (2008).

    Article  CAS  Google Scholar 

  13. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39 (2006).

    Article  CAS  Google Scholar 

  14. L. Liu, C. Anderson, and J. Liu, J. Electron. Mater. 33, 935 (2004).

    Article  ADS  CAS  Google Scholar 

  15. C.P. Vassilev, K.I. Lilova, and J.C. Gachon, Intermetallics 15, 1156 (2007).

    Article  CAS  Google Scholar 

  16. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  CAS  Google Scholar 

  17. C.W. Huang and K.L. Lin, J. Electron. Mater. 35, 2135 (2006).

    Article  ADS  CAS  Google Scholar 

  18. A. Neumann, A. Kjekshus, C. Rømming, and E. Røst, J.␣Alloys Compd. 240, 42 (1996).

    Article  CAS  Google Scholar 

  19. K.C. Hari Kumar, P. Wollants, and L. Dalaey, CALPHAD 18, 71 (1994).

    Article  Google Scholar 

  20. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  21. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  22. M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida, CALPHAD 28, 213 (2004).

    Article  CAS  Google Scholar 

  23. H.S. Liu, C.L. Liu, K. Ishida, and Z.P. Jin, J. Electron. Mater. 3, 1290 (2003).

    Article  ADS  Google Scholar 

  24. J.O. Anderson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, CALPHAD 26, 273 (2002).

    Article  Google Scholar 

  25. PANDAT software for multicomponent phase diagram calculations by CompuTherm. (LLC, Madison, WI, since 2000).

  26. V. Grolier and R. Schmid-Fetzer, Int. J. Mater. Res. 98, 797 (2007).

    CAS  Google Scholar 

  27. H. Okamoto, T.B. Massalski, M. Hasebe, and T. Nishizawa, Bull. Alloy Phase Diagrams 6, 449 (1985).

    Article  CAS  Google Scholar 

  28. J. Korb, unpublished assessment, GTT-Technologies, (2004).

  29. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  30. W. Wahl, Z. Anorg. Chem. 66, 60 (1910).

    Article  CAS  Google Scholar 

  31. U. Hashimoto, J. Jpn. Inst. Met. 1, 177 (1937).

    CAS  Google Scholar 

  32. E. Raub and P. Walter, Z. Metallkd. 41, 234 (1950).

    CAS  Google Scholar 

  33. A.T. Grigor’ev, E.M. Sokolovskaya, and M.V. Maksimova, Zh. Neorg. Khim. 1, 1047 (1956).

    Google Scholar 

  34. L. Weil, Z. Phys. Chem. 16, 368 (1958).

    CAS  Google Scholar 

  35. P. Taskinen, Scand. J. Met. 13, 39 (1984).

    CAS  Google Scholar 

  36. W. Klement Jr., Trans. Met. Soc. AIME 227, 965 (1963).

    CAS  Google Scholar 

  37. V.V. Berezutskiy, V.N. Eremenko, and G.M. Lukashenko, Izvest. Akad.Nank SSSR Metally 54 (1975).

  38. A. Kubil and C.B. Alcol, Met. Sci. J. 1, 19 (1967).

    Article  Google Scholar 

  39. S.S. Wang and J.M. Toguri, Can. J. Chem. 51, 2362 (1973).

    Article  CAS  Google Scholar 

  40. B. Predel and E. Zehnpfund, Z. Metallkd. 64, 782 (1973).

    CAS  Google Scholar 

  41. L. Topor and O.J. Kleppa, Metall. Trans. B 15, 573 (1984).

    Article  Google Scholar 

  42. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  43. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  44. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  45. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, and D.J. Singh. Phys. Rev. B 46, 6671 (1992).

    Google Scholar 

  46. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  ADS  CAS  Google Scholar 

  48. S. Lidin and A.K. Larsson, J. Solid State Chem. 118, 313 (1995).

    Article  ADS  CAS  Google Scholar 

  49. A.K. Jena and M.B. Bever, Metall. Trans. B 10, 545 (1979).

    Article  Google Scholar 

  50. H. Okamoto, J. Phase Equilib. 14, 765 (1993).

    Article  Google Scholar 

  51. K. Zeng and J.K. Kivilahti, J. Electron. Mater. 30, 35 (2001).

    Article  ADS  CAS  Google Scholar 

  52. C.L. Liu, Z.P. Jin, and H.S. Liu, Chin. J. Nonferr. Met. 13, 1343 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H.Q., Jin, S., Zhang, L.G. et al. Thermodynamic Assessment of the Au-Co-Sn Ternary System. J. Electron. Mater. 38, 2158–2169 (2009). https://doi.org/10.1007/s11664-009-0874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0874-4

Keywords

Navigation