Skip to main content
Log in

High-Operating-Temperature HgCdTe Avalanche Photodiodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this communication we report the first results of electro-optical characterization of planar heterostructure HgCdTe avalanche photodiodes (APDs), which enables the operation of APDs at high gain, at low bias, and with low dark current and/or at high operating temperature (HOT). The APD is based on a heterostructure in which the photons are detected in a wide-band-gap layer, and the photoelectrons are amplified in a vertical junction in a confined narrow-gap layer. The dark diffusion current and thermal background sensitivity of the device are limited by using a thin narrow-band-gap amplification layer. In addition, the defect-limited dark current is also expected to be reduced due to the reduced volume of the narrow-band-gap depletion layer. The electro-optical performance was characterized at T = 80 K and T = 200 K for two devices with a nominal thickness of the amplification layer of w = 100 nm and 500 nm, realized in x Cd = 0.3 Hg-vacancy-doped layers grown by molecular-beam epitaxy (MBE). The measurements show an average gain of 〈M〈 = 10 at a reverse bias of 5 V, which is slightly reduced compared with a conventional APD with x Cd = 0.3. The thermal diffusion current measured at low reverse bias, V b = 0.1 V, and at T = 200 K is about 0.1 mA/cm2 to 0.3 mA/cm2, which is a factor of 50 lower than standard x Cd = 0.3 n-on-p APDs. The quantum efficiency due to absorption in the gain layer is high (QEpeak > 30%), although no antireflecting coating was used, indicating that the device can also be used for high-operating-temperature thermal detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Beck, C.-F. Wan, M.A. Kinch, J.E. Robinson, Proc. SPIE, 4454, 188 (2001). doi:10.1117/12.448174.

    Article  ADS  CAS  Google Scholar 

  2. M.A. Kinch, J.D. Beck, C.-F. Wan, F. Ma, J. Campbell, J. Electron. Mater., 33, 630 (2004). doi:10.1007/s11664-004-0058-1.

    Article  ADS  CAS  Google Scholar 

  3. J.D. Beck, C.-F. Wan, M.A. Kinch, J.E. Robinson, P. Mitra, R. Scrithfield, F. Ma, J. Campbell, J. Electron. Mater., 35,1166 (2006). doi:10.1007/s11664-006-0237-3.

    Article  ADS  CAS  Google Scholar 

  4. J.D. Beck, C.-F. Wan, M.A. Kinch, J.E. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, J. Electron. Mater. 38 (2009), to be published.

  5. M. Vaidyanathan, A. Joshi, Song Xue, B. Hanyaloglu, M. Thomas, M. Zandian, D. Edwall, G. Williams, J. Blackwell, W. Tennant, and G. Hughes, 2004 IEEE Aerospace Conference Proc. (2004), p. 1776.

  6. I. Baker, S. Duncan and J. Copley, Proc. SPIE, 5406, 113 (2004).

    ADS  Google Scholar 

  7. I. Baker, P. Thorne, J. Henderson, J. Copley, D. Humphreys, and A. Millar, Proc. SPIE, 6206, 620608-1 (2006). doi:10.1117/12.673577.

    Google Scholar 

  8. R. S. Hall, N.T. Gordon, J. Giess, J.E. Hails, A. Graham, D.C. Herbert, D.J. Hall, P. Southern, J.W. Cairns, D.J. Lees, and T. Ashley, Proc. SPIE, 5783, 412 (2005). doi:10.1117/12.603386.

    Article  ADS  CAS  Google Scholar 

  9. G. Perrais, J. Rothman, G. Destefanis, J. Baylet, P. Castelein, J.-P. Chamonal et P. Tribolet, Proc. SPIE, 6935, 69350H (2006).

    Google Scholar 

  10. M. B. Reine, J. W. Marciniec, K. K. Wong, T. Parodos, J. D. Mullarkey, P. A. Lamarre, S. P. Tobin and K. A. Gustavsen, Proc. SPIE 6294, 629401 (2006). doi:10.1117/12.674137.

    Article  CAS  Google Scholar 

  11. M. B. Reine, J. W. Marciniec, K. K. Wong, T. Parodos, J. D. Mullarkey, P. A. Lamarre, S. P. Tobin and K. A. Gustavsen, J. Electron. Mater., 36, 1059 (2007). doi:10.1007/s11664-007-0172-y.

    Article  ADS  CAS  Google Scholar 

  12. J. Rothman G. Perrais, P. Ballet, L. Mollard, S. Gout, and J.-P. Chamonal., J. Electron. Mater. 37, 1303 (2008). doi:10.1007/s11664-008-0449-9.

    Article  ADS  CAS  Google Scholar 

  13. J. Rothman, G. Perrais, E. de Borniol, P. Castelein, N. Baier, F. Guellec, M. Tchagaspanian, P. Ballet, L. Mollard, S. Gout, A. Perez, M. Fournier, J.-P. Chamonal, P. Tribolet and G. Destefanis, Proc. SPIE 6940, 69402 N (2008). doi:10.1117/12.780447.

    Article  Google Scholar 

  14. J. Asbrock, S. Bailey, D Baley, J. Boisvert, G. Chapman,G. Crawforda, T. De Lyon, B. Drafahl, J. Edwards, E. Herrin, C. Hoyt, M. Jack, R. Kvaasa, K. Liu, W. McKeag, R. Rajavel, V. Randall, S. Rengarajanc and J.Rikerd., Proc. SPIE, 6940, 69402O (2008). doi:10.1117/12.783940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rothman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, J., Baier, N., Ballet, P. et al. High-Operating-Temperature HgCdTe Avalanche Photodiodes. J. Electron. Mater. 38, 1707–1716 (2009). https://doi.org/10.1007/s11664-009-0823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0823-2

Keywords

Navigation