Skip to main content
Log in

Characterization of Self-Formed Ti-Rich Interface Layers in Cu(Ti)/Low-k Samples

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In our previous studies, thin Ti-rich diffusion barrier layers were found to be formed at the interface between Cu(Ti) films and SiO2/Si substrates after annealing at elevated temperatures. This technique was called self-formation of the diffusion barrier, and is attractive for fabrication of ultralarge-scale integrated (ULSI) interconnects. In the present study, we investigated the applicability of this technique to Cu(Ti) alloy films which were deposited on low dielectric constant (low-k) materials (SiO x C y ), SiCO, and SiCN dielectric layers, which are potential dielectric layers for future ULSI Si devices. The microstructures were analyzed by transmission electron microscopy (TEM) and secondary-ion mass spectrometry (SIMS), and correlated with the electrical properties of the Cu(Ti) films. It was concluded that the Ti-rich interface layers were formed in all the Cu(Ti)/dielectric-layer samples. The primary factor to control the composition of the self-formed Ti-rich interface layers was the C concentration in the dielectric layers rather than the enthalpy of formation of the Ti compounds (TiC, TiSi, and TiN). Crystalline TiC was formed on the dielectric layers with a C concentration higher than 17 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Murarka, Mater. Sci. Eng. Res. 19, 87 (1997). doi:10.1016/S0927-796X(97)00002-8

    Article  Google Scholar 

  2. “The International Technology Roadmap for Semiconductors (ITRS)”, http://www.itrs.net/Links/2003ITRS/Interconnect2003.pdf, 2003

  3. M.T. Bohr, Y.A. El-Mansy, IEEE Trans. Electron Dev.. 45, 620 (1998). doi:10.1109/16.661223

    Article  Google Scholar 

  4. S.P. Murarka, Mater. Sci. Technol. 17, 749 (2001)

    Article  CAS  Google Scholar 

  5. Y. Morand, Microelectron. Eng. 50, 391 (2000). doi:10.1016/S0167-9317(99)00307-X

    Article  CAS  Google Scholar 

  6. M. Moriyama, M. Shimada, H. Masuda, M. Murakami, Trans. Mater. Res. Soc. Jpn. 29, 51 (2004)

    CAS  Google Scholar 

  7. M. Shimada, M. Moriyama, K. Ito, S. Tsukimoto, M. Murakami, J. Vac. Sci. Technol. B 24, 190 (2006). doi:10.1116/1.2151910

    Article  CAS  Google Scholar 

  8. P.J. Ding, W.A. Lanford, S. Hymes, S.P. Murarka, J. Appl. Phys. 75, 3627 (1994). doi:10.1063/1.356075

    Article  CAS  Google Scholar 

  9. D. Adams, T.L. Alford, N.D. Theodore, S.W. Russell, R.L. Spreitzer, J.W. Mayer, Thin Solid Films 262, 199 (1995). doi:10.1016/0040-6090(94)05805-9

    Article  CAS  Google Scholar 

  10. C.J. Liu, J.S. Chen, Appl. Phys. Lett. 80, 2678 (2002). doi:10.1063/1.1468913

    Article  CAS  Google Scholar 

  11. C.J. Liu, J.S. Jeng, J.S. Chen, Y.K. Lin, J. Vac. Sci. Technol. B 20, 2361 (2002). doi:10.1116/1.1520552

    Article  CAS  Google Scholar 

  12. M.J. Frederick, R. Goswami, G. Ramanath, J. Appl. Phys. 93, 5966 (2003). doi:10.1063/1.1566451

    Article  CAS  Google Scholar 

  13. M.J. Frederick, G. Ramanath, J. Appl. Phys. 95, 3202 (2004). doi:10.1063/1.1647264

    Article  CAS  Google Scholar 

  14. S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, M. Murakami, J. Electron. Mater. 34, 592 (2005). doi:10.1007/s11664-005-0070-0

    Article  CAS  Google Scholar 

  15. S. Tsukimoto, T. Kabe, K. Ito, M. Murakami, J. Electron. Mater. 36, 258 (2007). doi:10.1007/s11664-007-0094-8

    Article  CAS  Google Scholar 

  16. K. Ito, S. Tsukimoto, T. Kabe, K. Tada, M. Murakami, J. Electron. Mater. 36, 606 (2007). doi:10.1007/s11664-007-0097-5

    Article  CAS  Google Scholar 

  17. J. Perez-Rigueiro, P. Herrero, C. Jimenez, R. Perez-Casero, and J.M. Martinez-Duart, Surf. Interface Anal. 25, 896 (1997). doi:10.1002/(SICI)1096-9918(199710)25:11<896::AID-SIA315> 3.0.CO;2-4

    Google Scholar 

  18. The Japan Institute of Metals ed., Metal Databook, 4th ed. (in Japanese) (Tokyo: Maruzen Co., Ltd., 2004), pp. 101

  19. D.G. Archer, R.J. Kematick, C.E. Myers, S. Agarwal, E.J. Cotts, J. Chem. Eng. Data 44, 167 (1999). doi:10.1021/je9802120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology (18360324). The authors would like to thank the Shorai Foundation for Science and Technology, and the Iketani Science and Technology Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohama, K., Ito, K., Tsukimoto, S. et al. Characterization of Self-Formed Ti-Rich Interface Layers in Cu(Ti)/Low-k Samples. J. Electron. Mater. 37, 1148–1157 (2008). https://doi.org/10.1007/s11664-008-0482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0482-8

Keywords

Navigation