Skip to main content
Log in

Investigation of Electron–Hole Recombination-Activated Partial Dislocations and Their Behavior in 4H-SiC Epitaxial Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Electron–hole recombination-activated partial dislocations in 4H silicon carbide homoepitaxial layers and their behavior have been studied using synchrotron X-ray topography and electroluminescence. Stacking faults whose expansion was activated by electron–hole recombination enhanced dislocation glide were observed to be bounded by partial dislocations, which appear as white stripes or narrow dark lines in back-reflection X-ray topographs recorded using the basal plane reflections. Such contrast variations are attributable to the defocusing/focusing of the diffracted X-rays due to the edge component of the partial dislocations, which creates a convex/concave distortion of the basal planes. Simulation results based on the ray-tracing principle confirm our argument. Observations also indicate that, when an advancing partial dislocation interacts with a threading screw dislocation, a partial dislocation dipole is dragged behind in its wake. This partial dislocation dipole is able to advance regardless of the immobility of the C-core segment. A kink pushing mechanism is introduced to interpret the advancement of this partial dislocation dipole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koga, Y. Fujikawa, Y. Ueda, T. Yamaguchi, Springer Proc. Phys. 71, 96 (1992)

    CAS  Google Scholar 

  2. H. Chen, B. Raghothamachar, W. Vetter, M. Dudley, Y. Wang, B. Skromme, Mater. Res. Soc. Symp. Proc. 911, 0911-B05-24 (2006)

    Google Scholar 

  3. Y. Chen, G. Dhanaraj, W. Vetter, R. Ma, M. Dudley, Mater. Sci. Forum. 556–557, 231 (2007)

    Google Scholar 

  4. H. Lendenmann, F. Dahlquist, N. Johansson, R. Soderholm, P.A. Nilsson, J.P. Bergman, P. Skytt, Mater. Sci. Forum. 353–356, 727 (2001)

    Google Scholar 

  5. A. Galeckas, J. Linnros, P. Pirouz, Appl. Phys. Lett. 81, 883 (2002)

    Article  CAS  Google Scholar 

  6. S. Ha, M. Benamara, M. Skowronski, H. Lendinmann, Appl. Phys. Lett. 83, 4957 (2003)

    Article  CAS  Google Scholar 

  7. S. Ha, M. Skowronski, J.J. Sumakeris, M.J. Paisley, M.K. Das, Phys. Rev. Lett. 92, 175504 (2004)

    Article  CAS  Google Scholar 

  8. R.E. Stahlbush, M. Fatemi, J.B. Fedison, S.D. Arthur, L.B. Rowland, W. Wang, J. Electron. Mater. 31, 370 (2002)

    Article  CAS  Google Scholar 

  9. Y. Chen, G. Dhanaraj, M. Dudley, E.K. Sanchez, and M.F. MacMillan, Appl. Phys. Lett. 91, 071917 (2007)

    Google Scholar 

  10. Y. Chen and M. Dudley, Appl. Phys. Lett. 91, 141918 (2007)

    Google Scholar 

  11. X.R. Huang, D.R. Black, A.T. Macrander, J. Maj, Y. Chen, and M. Dudley, Appl. Phys. Lett. (2007) (in press)

  12. K.X. Liu, R.E. Stahlbush, K.B. Hobart, J.J. Sumakeris, Mater. Sci. Forum. 527–529, 387 (2006)

    Google Scholar 

  13. R.E. Stahlbush, M. Fatemi, J.B. Fedison, S.D. Arthur, L.B. Rowland, S. Wang, J. Elec. Mater. 31, 370 (2002)

    Article  CAS  Google Scholar 

  14. Y. Chen, M. Dudley, E.K. Sanchez, and M.F. MacMillan, J.␣Electron. Mater. (in press)

  15. M. Dudley, X.R. Huang, W. Huang, J. Phys. D: Appl. Phys. 32, A139 (1999)

    Article  CAS  Google Scholar 

  16. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, S. Wang, C.H. Carter Jr., Appl. Phys. Lett. 74, 353 (1999)

    Article  CAS  Google Scholar 

  17. P. Pirouz, M. Zhang, A. Galeckas, J. Linnros, Mater. Sci. Forum. 815, J6.1.1 (2004)

    Google Scholar 

  18. The core structure can be verified by using the right-hand rule to determine the position of the extra half-plane associated with the PD: assuming the line direction of the Shockley PD loop bounding the SF is clockwise, one can determine that the extra half-planes for segments AB, CD, and EF lie on the same side of the dislocation line (above the plane of the pictures); therefore they have the same core structure. On the contrary, the extra half-planes of segment BC and DE lie underneath the plane of the pictures, indicating the opposite core structure

  19. P. Pirouz, J.L. Demenet, M.H. Hong, Phil. Mag. A 81, 1207 (2001)

    Article  CAS  Google Scholar 

  20. Y. Chen, M. Dudley, K.X. Liu, R.E. Stahlbush, Appl. Phys. Lett. 90, 171930 (2007)

    Article  CAS  Google Scholar 

  21. S. Ha, H.J. Chung, N.T. Nuhfer, M. Skowronski, J. Cryst. Growth 262, 130 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by ONR Grants N0001140010348, N000140110302, and N000140 211014 (Contract Monitor Dr. Colin Wood) and by Dow Corning Corporation under Contract Nos. N0001405C0324 and DAAD1701C0081. Topography experiments were carried out at the Stony Brook Synchrotron Topography Facility, beamline X-19C, at the NSLS (Contract No. DE-AC02-76CH00016) and beamline XOR-33BM, Advance Photon Source, Argonne National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhang, N., Dudley, M. et al. Investigation of Electron–Hole Recombination-Activated Partial Dislocations and Their Behavior in 4H-SiC Epitaxial Layers. J. Electron. Mater. 37, 706–712 (2008). https://doi.org/10.1007/s11664-007-0328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0328-9

Keywords

Navigation