Skip to main content
Log in

Role of shape-memory alloy reinforcements on strain evolution in lead-free solder joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microelectronic solder joints are exposed to aggressive thermomechanical cycling (TMC) during service, resulting in strain localization near solder/bond-pad interfaces, which eventually leads to low-cycle fatigue (LCF) failure of the joint. In order to mitigate these strain concentrations, a “smart solder” reinforced with a martensitic NiTi-based shape-memory alloy (SMA) has been proposed before. In the present work, the role of NiTi particles on strain evolution in composite solders was studied using a combination of experimental and numerical means. Finite element modeling showed that NiTi pariculate reinforcements can reduce inelastic strain levels in the solder via shape recovery associated with the B19′ → B2 transformation. In situ TMC studies in the scanning electron microscope (SEM), in conjunction with strain analysis via digital image correlation (DIC), showed evidence of reverse deformation in the solder commensurate with the NiTi phase transformation, demonstrating the conceptual viability of the smart solder approach. The SEM-DIC experiments also suggested that the presence of particulates mitigates shear localization, which is commonly observed in monolithic solder joints close to joint/bond-pad interfaces. Finally, TMC experiments on monolithic solder and NiTi/solder single-fiber composite joints highlighted the beneficial effect of shape-memory transformation in reducing inelastic strain range of solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Lau and D.W. Rice, Solid State Technol. 28, 91 (1985).

    CAS  Google Scholar 

  2. J. Kloeser, E. Jung, K. Heinricht, K. Kutzner, A. Ostmann, and H. Reichl, Proceedings of Pan Pacific Microelectronics Symposium (1998), pp. 93–102.

  3. H. Conrad, Z. Guo, Y. Fahmy, and D. Yang, J. Electron. Mater. 28, 1062 (1999).

    Article  CAS  Google Scholar 

  4. P. Hacke, A.F. Sprecher, and H. Conrad, J. Electron, Packaging 115, 153 (1993).

    Google Scholar 

  5. P.L. Hacke, Y. Fahmy, and H. Conrad, J. Electron. Mater. 27, 941 (1998).

    CAS  Google Scholar 

  6. I. Dutta, A. Gopinath, and C. Marshall, J. Electron. Mater. 31, 253 (2002).

    Article  CAS  Google Scholar 

  7. D.R. Frear, D. Grivas, and J.W. Morris, Jr., J. Metals 40(6) 18, (1998).

    Google Scholar 

  8. V. Sarihan, J. Electron. Packaging 115, 16 (1993).

    Google Scholar 

  9. C.G. Kuo, S.M.L. Sastry, and K.L. Jerina, Metall. Mater. Trans. A 26A, 3265 (1995).

    CAS  Google Scholar 

  10. J.L. Marshall and J. Calderon, Solder. Surf. Mount Technol. 9, 22 (1997).

    CAS  Google Scholar 

  11. A.W. Gibson, K.N. Subramanian, and T.R. Bieler, J. Adv. Mater. 30, 19 (1998).

    CAS  Google Scholar 

  12. K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater. 28, 1176 (1999).

    Article  CAS  Google Scholar 

  13. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 28, 1184 (1999).

    Article  CAS  Google Scholar 

  14. J.P. Lucas, F. Guo, J. McDougall, T.R. Bieler, K.N. Subramanian, and J.K. Park, J. Electron. Mater. 28, 1270 (1999).

    Article  CAS  Google Scholar 

  15. J.H. Lee, D. Park, J.T. Moon, Y.H. Lee, D.H. Shin, and Y.S. Kim, J. Electron. Mater. 29, 1264 (2000).

    Article  CAS  Google Scholar 

  16. S. Choi, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Mater. Sci. 11, 497 (2000).

    CAS  Google Scholar 

  17. J. McDougall, S. Choi, T.R. Bieler, K.N. Subramanian, and J.P. Lucas, Mater. Sci. Eng. A 285, 25 (2000).

    Article  Google Scholar 

  18. C. Val, M. Leroy, and H. Boulharts, Proc. Int. Conf. Electron. Technol. (Windsor, UK: 1994), pp. 119–122.

  19. S. Trombert, J. Chazelas, P. Bonniay, W. Van Moorleghem, M. Chandrasekharan, and J.F. Silvain, Proc. SPIE. Int. Soc. Opt. Eng. Vol. 2779 (Bellingham, WA: SPIE, 1996), pp. 475–480.

    Google Scholar 

  20. S. Trombert, J. Chazelas, M. Lahaye, and J.F. Silvain, Compos. Interfaces 5, 479 (1998).

    CAS  Google Scholar 

  21. J.F. Silvain, J. Chazelas, M. Lahaye, and S. Trombert, Mater. Sci. Eng. A 273–275, 818 (1999).

    Google Scholar 

  22. J.F. Silvain, J. Chazelas, and S. Trombert, Proc. Shape-Memory Superelastic Technology (New York: John Wiley & Sons, 2002), Vol. 7, pp. 128.

    Google Scholar 

  23. O. Fouassier, S. Trombert, J.F. Silvain, J. Chazelas, D. Aslandis, A. Serneels, and W. Van Moorleghem, Proc. Shape-Memory Superelastic Technology (Materials Park, OH: SMST, 1999), pp. 1–9.

    Google Scholar 

  24. I. Dutta, B.S. Majumdar, D. Pan, W.S. Horton, W. Wright, and Z.X. Wang, J. Electron. Mater. 33, 258 (2004).

    Article  CAS  Google Scholar 

  25. Z.X. Wang, I. Dutta, and B.S. Majumdar, Scripta Mater. 54, 627 (2006).

    Article  CAS  Google Scholar 

  26. Z.X. Wang, B.S. Majumdar, and I. Dutta, Mater. Sci. Eng. A A421, 133 (2005).

    Google Scholar 

  27. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Biomaterials 23, 4863 (2002).

    Article  CAS  Google Scholar 

  28. J.G. Webster, ed., Wiley Encyclopedia of Electrical and Electronics Engineering (New York: John Wiley & Sons, 2002), Vol. 7, p. 128.

    Google Scholar 

  29. T. Fang, private communication (2002).

  30. L. Allais, M. Bornert, T. Bretheau, and D. Caldemaison, Acta Metall. 33, 3865 (1994).

    Article  Google Scholar 

  31. C.R. Corleto, W.L. Bradley, and H.F. Brinson, J. Mater. Sci. 33, 1803 (1996).

    Article  Google Scholar 

  32. Database on Properties of Lead Free Solder, National Institute of Standards & Technologies, http://www.boulder.nist.gov/div853/lead%20free/part1.html.

  33. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411C, 48 (2005).

    Google Scholar 

  34. I. Dutta, D. Pan, and S. Jadhav, Proc. 6th EuroSime 2005 (Los Alamitos, CA: IEEE, 2005), pp. 641–647.

    Google Scholar 

  35. Metals Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 10th ed. ed. C.T. Liu, J.O. Steigler, F.H. Sam Fores (Materials Park, OH: ASM International, 1990), pp. 897–902.

    Google Scholar 

  36. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Acta Mater. 50, 4255 (2002).

    Article  CAS  Google Scholar 

  37. G. Eggeler, J. Khalil-Allafi, K. Neuking, and A. Dlouhy, Z. Metallk. 93, 654 (2002).

    CAS  Google Scholar 

  38. R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, and M. Mullner, J. Phys. Condens. Matter 1, 2473 (1989).

    Article  CAS  Google Scholar 

  39. R.W. Herzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed. (New York: J. Wiley & Sons, 1995), pp. 567–570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, I., Pan, D., Ma, S. et al. Role of shape-memory alloy reinforcements on strain evolution in lead-free solder joints. J. Electron. Mater. 35, 1902–1913 (2006). https://doi.org/10.1007/s11664-006-0174-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0174-1

Key words

Navigation