Skip to main content
Log in

Carbon-black thixotropic thermal pastes for improving thermal contacts

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper addresses thermal interface materials for thermal conduction of excess heat for microelectronic applications. Carbon black (30 nm) thixotropic paste based on polyol ethers is comparable to carbon black fluidic paste based on polyethylene glycol (PEG) in its effectiveness as a thermal paste, and in its dependence on pressure history. Prior pressure (up to 0.69 MPa) application is helpful. The optimum carbon black content is 2.4 vol.% for the thixotropic paste. The thermal contact conductance across copper surfaces is 30 × 104 and 11 × 104 W/m2-°C for surface roughness of 0.05 µm and 15 µm, respectively. The volume electrical resistivity is 3 × 103 Ω-cm. Boron nitride (BN) (5–11 µm) and graphite (5 µm) thixotropic pastes are less effective than carbon black thixotropic paste by up to 70% and 25%, respectively, in thermal contact conductance, due to low conformability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.G. Wolff and D.A. Schneider, Int. J. Heat Mass Transfer 41, 3469 (1998).

    Article  CAS  Google Scholar 

  2. T. Ouellette and M. De Sorgo, Proc. Power Electronic Design Conf. (Cerritos, CA: Power Sources Users Conf., 1985), pp. 134–138.

    Google Scholar 

  3. M.R. Vogel, Proc. Int. Intersociety of Electronic Packaging Conf. (New York: ASME, 1995), p. 989.

    Google Scholar 

  4. S.W. Wilson, A.W. Norris, E.B. Scott, and M.R. Costello, National Electronic Packaging and Production Conf.: Proc. Technical Program (Norwalk, CT: Reed Exhibition Companies, 1996), pp. 788–796.

    Google Scholar 

  5. A.L. Peterson, Proc. 40th Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1990), pp. 613–619.

    Book  Google Scholar 

  6. X. Lu, G. Xu, P.G. Hofstra, and R.C. Bajcar, J. Polym. Sci. Pol. Phys. 36, 2259 (1998).

    Article  CAS  Google Scholar 

  7. T. Sasaski, K. Hisano, T. Sakamoto, S. Monma, Y. Fijmori, H. Iwasaki, and M. Ishizuka, Jpn. IEMT Symp. Proc.: IEEE/CPMT Int. Electronic Manufacturing Technology (IEMT) Symp. (Piscataway, NJ: IEEE, 1995), p. 236.

    Google Scholar 

  8. Y. Xu, X. Luo, and D.D.L. Chung, J. Electron. Packaging 124, 188 (2002).

    Article  CAS  Google Scholar 

  9. Y. Xu, X. Luo, and D.D.L. Chung, J. Electron. Packaging 122, 128 (2000).

    Article  CAS  Google Scholar 

  10. C.-K. Leong and D.D.L. Chung, Carbon 42, 2323 (2004).

    Article  CAS  Google Scholar 

  11. C.-K. Leong and D.D.L. Chung, Carbon 41 2459 (2003).

    Article  CAS  Google Scholar 

  12. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, and C.Y. Yang, Nano Lett. 4, 2403 (2004).

    Article  CAS  Google Scholar 

  13. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  CAS  Google Scholar 

  14. K. Inoue and E. Ohmura, Yosetsu Gakkai Ronbunshu/Q. J. Jpn. Welding Soc. 6, 130 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, CK., Aoyagi, Y. & Chung, D.D.L. Carbon-black thixotropic thermal pastes for improving thermal contacts. J. Electron. Mater. 34, 1336–1341 (2005). https://doi.org/10.1007/s11664-005-0259-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0259-2

Key words

Navigation