Skip to main content

Advertisement

Log in

Screen Printed Graphite Nanoplatelet and Nanoparticle Composites for Thermal Interface Materials Application

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Screen printed thermal grease of embedded nanoparticles (NPs) on top of graphite nanoplatelets (GNPs) composites are fabricated with pre-defined mesh patterns as a new generation of Thermal interface materials (TIM). In the present study, the NPs thermal grease can be uniformly deposited and reliably controlled thickness in 45 μm in the matrix GNPs. Furthermore, three types of TIM are tested based on the hybridization of GNPs and the nanoparticles (NPs) thermal grease. The hybrid materials are fabricated via screen printing process to ensure the conformal uniformity of NPs thermal grease spreading on the GNPs. The performance of fabricated materials such as temperature, applied pressure, heat flux, and TIM thickness are concurrently tested in the heat flux values in the range of 0–5.3 W cm−2 and the pressure range 0–5.6 kgf/cm2 using a standard TIM tester. The steady-state heat flow technique of ASTM D5470-06 are fully adopted. The measured thermal conductivity of GNPs (3 layers) +NPs (2 layers) composite of a thickness of 195 μm is 0.2 W/m K, compared favorably with the sample of only one layer GNPs (0.11 W/m K). Experimentally, the measured trend in the change of specific thermal conductivity with pressure was in good agreement with the data presented in the literature. In the actual implementation of insulated gate bipolar transistors (IGBT) for 15 kW inverter system used for the renewable energy (solar and wind power), the fabricated composite with GNPs (3 layers) and NPs (2 layers) can effectively reduce the peak temperature of IGBT chip and is very promising in preventing thermally-related failure for the IGBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  Google Scholar 

  • Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22:4190–4198

    Article  Google Scholar 

  • Chung DDL (2001) Thermal interface materials. J Mater Perform 10(1):56–59

    Article  MathSciNet  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC, Chung DDL (1977) Lattice vibrations in graphite and intercalation compounds of graphite. Mater Sci Eng 31:141–152

    Article  Google Scholar 

  • Faddoul R, Bruas NR, Blayo A (2012) Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater Sci Eng 177:1053–1066

    Article  Google Scholar 

  • Fukushima H, Fukushima LT, Rook BP, Rich MJ (2006) Thermal conductivity ofexfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Green MA (2011) Ag requirements for silicon wafer-based solar cells. Prog Photovolt Res Appl 19:911–916

    Article  Google Scholar 

  • Huang ZG, Chen ZY (2011) “Analysis of heat dissipation in led with various adhesives. J Thermal Sci 20:254

    Article  Google Scholar 

  • Hui Y, Liangliang L, Yujun Z (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scripta Mater 66:931–934

    Article  Google Scholar 

  • Kempers R, Kolodner P, Lyons A, Robinson AJ (2009) A high-precision apparatu for the characterization of thermal interface materials. Rev Sci Instrum 80:095111

    Article  Google Scholar 

  • Lu D, Wong CP, Prasher R, Chiu CP (2009) Materials for advanced packaging. Springer, New York, pp 437–458

    Book  Google Scholar 

  • Mahajan R, Chiu CP, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94:1476–1486

    Article  Google Scholar 

  • Meysenc L, Jylhakallio M, Barbosa P (2005) Power electronics cooling effectiveness versus thermal inertia. IEEE T Power Electr 20:687–693

    Article  Google Scholar 

  • Park W, Guo Y, Li X, Hu J, Liu L, Ruan X, Chen YP (2015) High-performance thermal interface material based on few-layer graphene composite. J Phys Chem C 119:26753–26759

    Article  Google Scholar 

  • Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453

    Article  Google Scholar 

  • Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281

    Article  Google Scholar 

  • Prasher R (2006a) thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94(8):1571–1586

    Article  Google Scholar 

  • Prasher R (2006b) Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. IEEE 94:1571–1585

    Article  Google Scholar 

  • Prasher RS, Shipley J, Prstic S, Koning P, Wang JL (2003) Thermal resistance of particle laden polymeric thermal interface materials. ASME J Heat Transfer 125:1170–1177

    Article  Google Scholar 

  • Prasher RS, Chang JY, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C (2005) Nano and micro technology-based next-generation package-level cooling solutions. Intel Technol J Electron Package Technol Dev 9:285–296

    Google Scholar 

  • Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245

    Article  Google Scholar 

  • Raza MA, Westwood A, Brown A, Hondow N, Stirling C (2011) Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49:4269–4279

    Article  Google Scholar 

  • Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30–35

    Article  Google Scholar 

  • Sekitani T, Someya T (2012) Ambient Electronics. Jpn J Appl Phys 51:100001-1–100001-13

    Article  Google Scholar 

  • Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  Google Scholar 

  • Skuriat R, Li JF, Agyakwa PA, Mattey N, Evans P, Johnson CM (2013) Degradation of thermal interface materials for high-temperature power electronics applications. Microeletron Reliab 53:1933–1942

    Article  Google Scholar 

  • Smith B, Brunschwiler T, Michel B (2008) Comparison of transient and static test methods for chip-to-sink thermal interface characterization. Microelectron J 40(9):1379–1386

    Article  Google Scholar 

  • Sun X, Yu A, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2011) Oxidized graphite nanoplatelets as an improved filler for thermally conducting epoxy-matrix composites. J Electron Packag 133(2):020905

    Article  Google Scholar 

  • Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces 7:243–256

    Article  Google Scholar 

  • Yoshida M, Tokuhisa H, Itoh U, Kamata T, Sumita I, Sekine S (2012) Novel low-temperature-sintering type Cu-alloy pastes for silicon solar cells. Energy Procedia 21:66–74

    Article  Google Scholar 

  • Yovanovich MM (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Compon Packag Technol 28(2):182–206

    Article  Google Scholar 

  • Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiin-Kuen Fuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, TC., Fuh, YK. & Tu, SX. Screen Printed Graphite Nanoplatelet and Nanoparticle Composites for Thermal Interface Materials Application. Microsyst Technol 23, 813–819 (2017). https://doi.org/10.1007/s00542-016-3116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3116-8

Keywords

Navigation