Skip to main content
Log in

Modeling of the zero-bias resistance-area product of long wavelength infrared HgCdTe-on-Si diodes fabricated from molecular beam epitaxy-grown epitaxial layers

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical effects of dislocations has been studied by modeling zero-bias resistance-area product (R0A) of long wavelength infrared diodes fabricated in molecular beam epitaxy (MBE)-grown HgCdTe-Si epitaxial films. Results show that dislocations influence both 40 K and 78 K R0A products in high dislocation density (HgCdTe/Si) material. In low dislocation density samples (HgCdTe/CdZnTe), the variations in 78 K R0A are limited by the composition (x) variations in Hg1-xCdxTe material, whereas dislocation contribution dominates the variations at 40 K. The origin of relatively large spread in 40 K R0A in both types of samples is traced to the statistical variations in the core charges of dislocations. It is concluded that additional alternatives besides the reduction of dislocation density (such as control of core charges), may also need attention in order to make Si a viable substrate material for the growth of HgCdTe epitaxial layers suitable for devices operating at 40 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. de Lyon, J.E. Jensen, M.D. Gurwitz, C.A. Cockrum, S.M. Johnson, and G.M. Venzor, J. Electron. Mater. 28, 705 (1999).

    Article  Google Scholar 

  2. R. Ashokan, N.K. Dhar, B. Yang, A. Akhiyat, T.S. Lee, S. Rujirawat, S. Yousuf, and S. Sivananthan, J. Electron. Mater. 29, 636 (2000).

    CAS  Google Scholar 

  3. K.D. Maranowski, J.M. Peterson, S.M. Johnson, J.B. Varesi, W.A. Radford, A.C. Childs, R.E. Bornfreund, and A.A. Buell, J. Electron. Mater. 30, 619 (2001).

    CAS  Google Scholar 

  4. J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. de Lyon, and J.E. Jensen, J. Electron. Mater. 30, 566 (2001).

    CAS  Google Scholar 

  5. J.B. Varesi, A.A. Buell, R.E. Bornfreund, W.A. Radford, J.M. Peterson, K.D. Maranowski, S.M. Johnson, and D.F. King, J. Electron. Mater. 31, 815 (2002).

    CAS  Google Scholar 

  6. J.B. Varesi, A.A. Buell, J.M. Peterson, R.E. Bornfreund, M.F. Vilela, W.A. Radford, S.M. Johnson, and D.F. King, J. Electron. Mater. 32, 661 (2003).

    Article  CAS  Google Scholar 

  7. S.M. Johnson et al., J. Electron. Mater. 33, 526 (2004).

    Article  CAS  Google Scholar 

  8. M. Carmody et al., J. Electron. Mater. 33, 531 (2004).

    Article  CAS  Google Scholar 

  9. V. Gopal, S.K. Singh, and R.K. Mehra, Infrared Phys. Technol. 43, 317 (2002).

    Article  CAS  Google Scholar 

  10. M.B. Riene, A.K. Sood, and T.J. Tredwell, in Photovoltaic Infrared Detectors, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1981), pp. 201–216.

    Google Scholar 

  11. V. Gopal and S. Gupta, IEEE-ED 50, 1220 (2003).

    CAS  Google Scholar 

  12. V. Gopal and S. Gupta, IEEE-ED 51, 1078 (2004).

    CAS  Google Scholar 

  13. V. Gopal and S. Gupta, J. Appl. Phys. 95, 2467 (2004).

    Article  CAS  Google Scholar 

  14. S.P. Tobin, M.H. Weiler, M.A. Hutchins, T. Parodos, and P.W. Norton, J. Electron. Mater., 28, 596 (1999).

    Article  CAS  Google Scholar 

  15. T. Sasaki and N. Oda, J. Appl. Phys., 78, 3121 (1995).

    Article  CAS  Google Scholar 

  16. S.H. Shin, J.M. Arias, D.D. Edwell, M. Zandian, J.G. Pasko, and R.E. DeWames, J. Vac. Sci. Technol. B 10, 1492 (1992).

    Article  CAS  Google Scholar 

  17. J.M. Arias, M. Zandian, S.H. Shin, W.V. McLevige, J.G. Pasko, and R.E. DeWames, J. Vac. Sci. Technol. B 9, 1646 (1991).

    Article  CAS  Google Scholar 

  18. I.M. Baker and C.D. Maxey, J. Electron. Mater. 30, 682 (2001).

    CAS  Google Scholar 

  19. S.K. Singh, V. Gopal, and R.M. Mehra, Opto-Electron. Rev. 9, 385 (2001).

    Google Scholar 

  20. A.G. Chynoweth and G.L. Pearson, J. Appl. Phys. 29, 1103 (1958).

    Article  CAS  Google Scholar 

  21. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  22. G.L. Hasen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, V., Gupta, S. Modeling of the zero-bias resistance-area product of long wavelength infrared HgCdTe-on-Si diodes fabricated from molecular beam epitaxy-grown epitaxial layers. J. Electron. Mater. 34, 1280–1286 (2005). https://doi.org/10.1007/s11664-005-0251-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0251-x

Key words

Navigation