Skip to main content
Log in

An Experimental Study of the Dynamic Resistance in Surface Leakage Limited nBn Structures Based on HgCdTe Grown by Molecular Beam Epitaxy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mid-wave infrared nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs (013) substrates were fabricated. The composition in the absorbing layer was 0.29, and in the barrier layer it was 0.67. It was shown that the dark currents of the created nBn structures are limited by the surface leakage component. To study the bulk component of the dark current, it was proposed to use the admittance measurements of test metal-insulator-semiconductor (MIS) devices based on fabricated nBn structures in the case of the formation of a backward contact to the absorbing layer. It was established that surface leakage does not affect the dynamic resistance of the MIS device barrier. The dependence of the dynamic resistance of the barrier layer (Rb) of the MIS device in the accumulation mode on the area of the front electrode (A), voltage, and temperature was determined. It was shown that, with the exclusion of surface leakage, the values of the RbA product in a temperature range of 230–300 K at forward biases are determined by the diffusion current of holes from the contact layer, and at reverse biases, by the diffusion current from the absorbing layer. It was found that at temperatures of 210–300 K, RbA values exceeding the values of this parameter determined according to the empirical model Rule 07 were realized in the fabricated structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Kinch, J. Electron. Mater. 44, 2969 (2015).

    Article  CAS  Google Scholar 

  2. D.A. Reago, S.B. Horn, J. Campbell Jr., and R.H. Vollmerhausen, Proc. SPIE 3701, 108 (1999).

    Article  Google Scholar 

  3. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 4 (2009).

    Article  CAS  Google Scholar 

  4. S. Maimon and G.W. Appl. Phys. Lett. 89, 151109 (2006).

    Article  CAS  Google Scholar 

  5. A. Rogalski, Infrared and Terahertz Detectors, 3rd edn. (CRC Press, Boca Raton, 2019).

    Book  Google Scholar 

  6. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.B. Rafol, S.A. Keo, L. Höglund, A.M. Fisher, E.M. Luong, and S.D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018).

    Article  CAS  Google Scholar 

  7. M. Delmas, R. Rossignol, J.B. Rodriguez, and P. Christol, Superlattice Microstruct. 104, 402 (2017).

    Article  CAS  Google Scholar 

  8. A. Evirgen, J. Abautret, J.P. Perez, A. Cordat, A. Nedelcu, and P. Christol, Electron. Lett. 50, 1472 (2014).

    Article  CAS  Google Scholar 

  9. N.D. Akhavan, G.A. Umana-Membreno, R. Gu, J. Antoszewski, and L. Faraone, IEEE Trans. Electron Dev. 65, 591 (2018).

    Article  CAS  Google Scholar 

  10. F. Uzgur and S. Kocaman, Proc. SPIE 11129, 1112903 (2019).

    Google Scholar 

  11. D. Benyahia, P. Martyniuk, M. Kopytko, J. Antoszewski, W. Gawron, P. Madejczyk, J. Rutkowski, R. Gu, and L. Faraone, Opt. Quantum Electron. 48, 215 (2016).

    Article  CAS  Google Scholar 

  12. J. He, P. Wang, Q. Li, F. Wang, Y. Gu, C. Shen, L. Chen, P. Martyniuk, A. Rogalski, X. Chen, W. Lu, and W. Hu, IEEE Trans. Electron Dev. 67, 2001 (2020).

    Article  CAS  Google Scholar 

  13. A.M. Itsuno, J.D. Phillips, and S. Velicu, Appl. Phys. Lett. 100, 161102 (2012).

    Article  CAS  Google Scholar 

  14. A.M. Itsuno, J.D. Phillips, and S. Velicu, J. Electron. Mater. 41, 2886 (2012).

    Article  CAS  Google Scholar 

  15. O. Gravrand, F. Boulard, A. Ferron, P. Ballet, and W. Hassis, J. Electron. Mater. 44, 3069 (2015).

    Article  CAS  Google Scholar 

  16. M. Kopytko and A. Rogalski, Prog. Quantum Electron. 47, 1 (2016).

    Article  Google Scholar 

  17. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, Infrared Phys. Technol. 102, 103035 (2019).

    Article  CAS  Google Scholar 

  18. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, J. Phys. D: Appl. Phys. 53, 055107 (2019).

    Article  CAS  Google Scholar 

  19. E. Gomółka, M. Kopytko, O.K. Markowska, K. Michalczewski, L. Kubiszyn, A. Kębłowski, J. Jureńczyk, W. Gawron, P.M. Martyniuk, J.F. Piotrowski, J. Rutkowski, and A. Rogalski, Opt. Eng. 57, 027107 (2018).

    Article  Google Scholar 

  20. X. Hao, Y. Zhao, Q. Wu, X. Li, Y. Teng, M. Xiong, Y. Huang, B. Chen, J. Huang, Z. Deng, and H. Yang, Semicond. Sci. Technol. 34, 065013 (2019).

    Article  CAS  Google Scholar 

  21. X. Du, B.T. Marozas, G.R. Savich, and G.W. Wicks, J. Appl. Phys. 123, 214504 (2018).

    Article  CAS  Google Scholar 

  22. D.E. Sidor, G.R. Savich, and G.W. Wicks, J. Electron. Mater. 45, 4663 (2016).

    Article  CAS  Google Scholar 

  23. M. Kopytko, E. Gomółka, K. Michalczewski, P. Martyniuk, J. Rutkowski, and A. Rogalski, Semicond. Sci. Technol. 33, 125010 (2018).

    Article  CAS  Google Scholar 

  24. C.P. Morath, E.A. Garduno, G.D. Jenkins, E.A. Steenbergen, and V.M. Cowan, Infrared Phys. Technol. 97, 448 (2019).

    Article  CAS  Google Scholar 

  25. X.M. Shen, ZYu. He, S. Liu, ZYu. Lin, Y.H. Zhang, D.J. Smith, and M.R. McCartney, Appl. Phys. Lett. 107, 122109 (2015).

    Article  CAS  Google Scholar 

  26. N. Yoon, C.J. Reyner, G. Ariyawansa, J.M. Duran, J.E. Scheihing, J. Mabon, and D. Wasserman, J. Appl. Phys. 122, 074503 (2017).

    Article  CAS  Google Scholar 

  27. D.R. Rhiger and E.P. Smith, J. Electron. Mater. 48, 6053 (2019).

    Article  CAS  Google Scholar 

  28. C.Y. Tsai, Y. Zhang, Z. Ju, and Y.H. Zhang, Appl. Phys. Lett. 116, 201108 (2020).

    Article  CAS  Google Scholar 

  29. J. Kim, H. Yuan, J. Kimchi, J. Lei, E. Rangel, P. Dreiske, and A. Ikhlassi, Proc. SPIE 10624, 1062412 (2018).

    Google Scholar 

  30. K. Michalczewski, F. Ivaldi, L. Kubiszyn, D. Benyahia, J. Boguski, A. Kębłowski, P. Martynuk, J. Piotrowski, and A. Rogalski, Acta Phys. Pol. A 132, 325 (2017).

    Article  CAS  Google Scholar 

  31. X. Li, D. Jiang, Y. Zhang, D. Wang, Q. Yu, T. Liu, H. Ma, and L. Zhao, J. Phys. D: Appl. Phys. 49, 165105 (2016).

    Article  CAS  Google Scholar 

  32. D.R. Rhiger, E.P. Smith, B.P. Kolasa, J.K. Kim, J.F. Klem, and S.D. Hawkins, J. Electron. Mater. 45, 4646 (2016).

    Article  Google Scholar 

  33. A. Glasmann, I. Prigozhin, and E. Bellotti, IEEE J. Electron Device Soc. 7, 534 (2019).

    Article  CAS  Google Scholar 

  34. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, Mater. Res. Expr. 6, 116411 (2019).

    Article  CAS  Google Scholar 

  35. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, Semicond. Sci. Technol. 35, 055026 (2020).

    Article  CAS  Google Scholar 

  36. R. Rossignol, J.B. Rodriguez, Q. Durlin, H. Aït-Kaci, J.P. Perez, F. Martinez, F. Gonzales Posada, and P. Christol, Proc. SPIE 10111, 101111H (2017).

    Article  Google Scholar 

  37. I.I. Izhnin, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-020-01636-z.

    Article  Google Scholar 

  38. Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors 35, 1045 (2001).

    Article  CAS  Google Scholar 

  39. R. Fu and J. Pattison, Opt. Eng. 51, 104003 (2012).

    Article  Google Scholar 

  40. P. Zhang, Z.H. Ye, C.H. Sun, Y.Y. Chen, T.N. Zhang, X. Chen, C. Lin, R.J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).

    Article  CAS  Google Scholar 

  41. S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Phillips, Proc. SPIE 8268, 82682X (2012).

    Article  CAS  Google Scholar 

  42. N.D. Akhavan, G. Jolley, G.A. Umana-Membreno, J. Antoszewski, and L. Faraone, J. Electron. Mater. 44, 3044 (2015).

    Article  CAS  Google Scholar 

  43. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant No. 19-12-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesmelov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. An Experimental Study of the Dynamic Resistance in Surface Leakage Limited nBn Structures Based on HgCdTe Grown by Molecular Beam Epitaxy. Journal of Elec Materi 50, 4599–4605 (2021). https://doi.org/10.1007/s11664-021-09001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09001-8

Keywords

Navigation