Skip to main content
Log in

Room-temperature indentation creep of lead-free Sn-5%Sb solder alloy

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Creep behavior of the lead-free Sn-5%Sb solder alloy was studied by long-time Vickers indentation testing at room temperature. Four different conditions of the material were examined. These were unhomogenized cast (UC), homogenized cast (HC), unhomogenized wrought (UW), and homogenized wrought (HW) conditions. Based on the steady-state power-law creep relationship, the stress exponents were determined through different methods of analysis, and in all cases, the calculated exponents were in good agreement. The stress exponent values of about 5 and 12, depending on the processing route of the material, are very close to those determined by room-temperature conventional creep testing of the same material reported in the literature. For the HW condition, the n value of about 5 together with a very fine grain size of 4.5 µm and a high volume fraction of second-phase particles of 8.6% may suggest that dislocation climb is the creep mechanism. For all other conditions with different grain sizes and second-phase volume fractions, however, the high n value of 12 implies that the operative creep mechanism is dislocation creep, which is independent of grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Murty, F.M. Haggag, and R.K. Mahidhara, J. Electron. Mater. 26, 839 (1997).

    CAS  Google Scholar 

  2. P.T. Vianco and D.R. Frear, JOM 45(7), 14 (1993).

    CAS  Google Scholar 

  3. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33A, 1531 (2002).

    Article  CAS  Google Scholar 

  4. H. Mavoori, JOM 52(6), 29 (2000).

    Google Scholar 

  5. M.H.N. Beshaie, S.K. Habib, A.M. Yassein, G. Saad, and M.H. Hasab El-Naby, Cryst. Res. Technol. 34, 119 (1999).

    Article  Google Scholar 

  6. R.J. McCabe and M.E. Fine, J. Electron. Mater. 31, 1276 (2002).

    CAS  Google Scholar 

  7. N. Wade, K. Wu, J. Kuni, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    CAS  Google Scholar 

  8. M. Fujiwara and M. Otsuka, Mater. Sci. Eng. A319–A321, 929 (2001).

    Google Scholar 

  9. R. Mahmudi, R. Roumina, and B. Raeisinia, Mater. Sci. Eng. A382, 15 (2004).

    CAS  Google Scholar 

  10. T.R.G. Kutty, T. Jarvis, and C. Ganguly, J. Nucl. Mater. 246, 189 (1997).

    Article  CAS  Google Scholar 

  11. R. Roumina, B. Raeisinia, and R. Mahmudi, Scripta Mater. 51, 497 (2004).

    Article  CAS  Google Scholar 

  12. T.R.G. Kutty, C. Ganguly, and D.H. Sastry, Scripta Mater. 34, 1833 (1996).

    Article  CAS  Google Scholar 

  13. A. De La Torre, P. Adeva, and M. Aballe, J. Mater. Sci. 26, 4351 (1991).

    Article  Google Scholar 

  14. G. Sharma, R.V. Ramanujan, T.R.G. Kutty, and G.P. Tiwari, Mater. Sci. Eng. A278, 106 (2000).

    CAS  Google Scholar 

  15. F. Yang and J.C.M. Li, Mater. Sci. Eng, A201, 40 (1995).

    CAS  Google Scholar 

  16. A. Juhasz, P. Tasnadi, P. Szasvari, and I. Kovacs, J. Mater. Sci. 21, 3278 (1986).

    Article  Google Scholar 

  17. M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  18. K.L. Murty, Mater. Sci. Eng. A14, 169 (1974).

    Google Scholar 

  19. T.T. Fang, R.R. Cola, and K.L. Murty, Metall. Trans. A 17A, 1447 (1986).

    CAS  Google Scholar 

  20. S. Devaki Rani and G.S. Murthy, Mater. Sci. Technol. 20, 403 (2004).

    Article  CAS  Google Scholar 

  21. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A379, 401 (2004).

    CAS  Google Scholar 

  22. G. Cseh, N.Q. Chinh. P. Tasnadi, and A. Juhasz, J. Mater. Sci. 32, 5107 (1997).

    Article  CAS  Google Scholar 

  23. P.M. Sargent and M.F. Ashby, Mater. Sci. Technol. 8, 594 (1992).

    CAS  Google Scholar 

  24. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  25. T.G. Langdon, Mater. Sci. Eng. A283, 266 (2000).

    CAS  Google Scholar 

  26. T.O. Mulhearn and D. Tabor, J. Inst. Met. 89, 7 (1960).

    CAS  Google Scholar 

  27. A. Juhasz, P. Tasnadi, and I. Kovacs, J. Mater. Sci. Lett. 5, 35 (1986).

    Article  CAS  Google Scholar 

  28. G.E. Dieter, Mechanical Metallurgy, 3rd ed (New York: McGraw-Hill, 1986), pp. 191–192.

    Google Scholar 

  29. G. Cseh, J. Bar, H.J. Gudladt, J. Lendvai, and A. Juhasz, Mater. Sci. Eng. A272, 145 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geranmayeh, A.R., Mahmudi, R. Room-temperature indentation creep of lead-free Sn-5%Sb solder alloy. J. Electron. Mater. 34, 1002–1009 (2005). https://doi.org/10.1007/s11664-005-0087-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0087-4

Key words

Navigation