Skip to main content
Log in

Inductively coupled plasma etching of HgCdTe using a CH4-based mixture

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report results on a study on inductively coupled plasma (ICP) etching of HgCdTe using a CH4-based mixture. Effects of key process parameters on etch rates were investigated and are discussed in this article in light of plasma parameter measurements, performed using a Langmuir probe. Process parameters of interest include ICP source power, substrate power, pressure, and CH4 concentration. We show that the ICP etching technique allows us to obtain etch rates of about 200 nm/min, which is high enough to use this technique in a manufacturing process. We also observe that the ion bombardment has a strong influence on HgCdTe etch rate. Finally, we show that this etch rate is modified by the substitution of methane for hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Reine, Infrared Detectors and Focal Plane Arrays VI, Proc. SPIE, ed. E.L. Dereniak and R.E. Sampson (Bellingham, WA: SPIE, 2000), vol. 4028, pp. 320–330.

    Google Scholar 

  2. P. Ferret, J.P. Zanatta, R. Hamelin, S. Cremer, A. Million, M. Wolny, and G. Destefanis, J. Electron. Mater. 29, 641 (2000).

    CAS  Google Scholar 

  3. J. Baylet et al., J. Electron. Mater. 33, 690 (2004).

    CAS  Google Scholar 

  4. A. Semu, L. Montelius, P. Leech, D. Jamieson, and P. Silverberg, Appl. Phys. Lett. 59, 1752 (1991).

    Article  CAS  Google Scholar 

  5. J.L. Elkind and G.J. Orloff, J. Vac. Sci. Technol. A 10, 1106 (1992).

    Article  CAS  Google Scholar 

  6. E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Höschl, Semicond. Sci. Technol. 11, 1116 (1996).

    Article  CAS  Google Scholar 

  7. C.R. Eddy, Jr., E.A. Dibisz, J.R. Meyer, and C.A. Hoffman, J. Vac. Sci. Technol. A 11, 1763 (1993).

    Article  CAS  Google Scholar 

  8. C.R. Eddy, Jr., D. Leonhardt, V.A. Shamamian, J.R. Meyer, C.A. Hoffman, and J.E. Butler, J. Electron. Mater. 28, 347 (1999).

    CAS  Google Scholar 

  9. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 24, 1155 (2005).

    Google Scholar 

  10. R.C. Keller, M. Seelmann-Eggebert, and H.J. Richter, J. Electron. Mater. 25, 1270 (1996).

    CAS  Google Scholar 

  11. M. Seelmann-Eggebert, A. Rar, H. Zimmermann, and P. Meisen, MRS Symp. Proc. 484, 259 (1998).

    CAS  Google Scholar 

  12. K.H. Song, T.H. Yoon, S.R. Hahn, E.T. Kim, J.H. Kwon, S.G. Lee, T.S. Hwang, Y.S. Lee, and J.M. Kim, SPIE Conf. on Infrared Technology and Applications XXIV (Bellingham, WA: SPIE, 1998), vol. 3436, pp. 77–83.

    Google Scholar 

  13. P. O’Dette, G. Tarnowski, V. Lukach, M. Krueger, and P. Lovecchio, J. Electron. Mater. 28, 821 (1999).

    CAS  Google Scholar 

  14. J.N. Johnson, J.H. Dinan, K.M. Singley, M. Martinka, and B. Johs, MRS Symp. Proc. 450, 293 (1997).

    CAS  Google Scholar 

  15. J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992).

    Article  CAS  Google Scholar 

  16. J.H. Keller, J.C. Foster, and M.S. Barnes, J. Vac. Sci. Technol. A 11, 2487 (1993).

    Article  CAS  Google Scholar 

  17. T. Hori, M.D. Bowden, K. Uchino, K. Muraoka, and M. Maeda, J. Vac. Sci. Technol. A 14, 144 (1996).

    Article  CAS  Google Scholar 

  18. E.P.G. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Google Scholar 

  19. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson, and S.E. Buttrill, Jr., J. Vac. Sci. Technol. A 7, 676 (1989).

    Article  CAS  Google Scholar 

  20. B. Chapman, Glow Discharges Processes (New York: John Wiley & Sons, 1980), ch. 3, pp. 49–79 and ch. 7, pp. 297–349.

    Google Scholar 

  21. F. Gaboriau, M.C. Peignon, G. Cartry, L. Rolland, D. Eon, C. Cardinaud, and G. Turban, J. Vac. Sci. Technol. A 20, 919 (2002).

    Article  CAS  Google Scholar 

  22. H. Sugai, K. Nakamura, Y. Hikosaka, and M. Nakamura, J. Vac. Sci. Technol. A 13, 887 (2005).

    Article  Google Scholar 

  23. A. Schwabedissen, E.C. Benck, and J.R. Roberts, Phys. Rev. E 55, 3450 (1997).

    Article  CAS  Google Scholar 

  24. V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, Plasma Sources Sci. Technol. 4, 332 (2005).

    Article  Google Scholar 

  25. H. Singh and D.B. Graves, J. Appl. Phys. 87, 4098 (2000).

    Article  CAS  Google Scholar 

  26. K. Okada, S. Komatsu, and S. Matsumoto, J. Vac. Sci. Technol. A 17, 721 (1999).

    Article  CAS  Google Scholar 

  27. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Material Processing (New York: John Wiley & Sons, 2004).

    Google Scholar 

  28. D.W. Kim, C.H. Jeong, K.N. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung, and G.Y. Yeom, Thin Solid Films 435, 242 (2003).

    Article  CAS  Google Scholar 

  29. C.R. Eddy, Jr., D. Leonhardt, S.R. Douglass, V.A. Shamamian, B.D. Thoms, and J.E. Butler, J. Vac. Sci. Technol. A 17, 780 (1999).

    Article  CAS  Google Scholar 

  30. H.Y. Chen and H.E. Ruda, J. Vac. Sci. Technol. B 20, 47 (2002).

    Article  Google Scholar 

  31. Y. Feurprier, C. Cardinaud, and G. Turban, J. Vac. Sci. Technol. B 15, 1733 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laffosse, E., Baylet, J., Chamonal, J.P. et al. Inductively coupled plasma etching of HgCdTe using a CH4-based mixture. J. Electron. Mater. 34, 740–745 (2005). https://doi.org/10.1007/s11664-005-0013-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0013-9

Key words

Navigation